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ABSTRACT

Android is the most popular mobile operating system. However, An-
droid development requires extensive coding, especially for unique
features such as lifecycle callbacks and UI widgets. Existing code
completion methods typically utilize Retrieval-Augmented Genera-
tion (RAG) to provide contextual information for pre-trained code
large language models (Code LLMs) to perform completion. De-
spite considerable progress in these methods, their effectiveness in
Android development remains limited. This is because the features
of Android development make it challenging for existing retrieval
mechanisms to extract sufficient context effectively. In response,
we propose DROIDCODER, a novel Android code completion frame-
work that employs Android development features and contextual
information of code snippets to enrich RAG. It also incorporates a
specifically designed loss function to fine-tune the model, enabling
it to better utilize context-enhanced RAG for Android code comple-
tion. We evaluated our method on three base models and different
types of applications, comparing it with two state-of-the-art code
completion methods. The experimental results demonstrate that
our method significantly outperforms the baselines at line-level
and multi-line-level code completion and improves the quality of
the completed code.
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1 INTRODUCTION

With the rapid advancement of mobile application development,
the Android platform has become one of the most popular mobile
operating systems due to its open-source nature, flexibility, and
extensive user base [7, 8]. Unlike other software development fields,
Android development presents unique challenges. These include
managing the lifecycle callbacks of components, interacting with
various User Interface (UI) widgets [49], and handling resources
and configuration files, all of which require substantial amounts of
code.

Recent code completion methods primarily rely on two tech-
niques: large-scale language models (Code LLMs) pre-trained on
large-scale code datasets [23, 47, 57] and the Retrieval-Augmented
Generation (RAG) approach [30, 55]. RAG enhances language mod-
els by finding and leveraging valuable information or examples
from external knowledge, particularly in the case of rare patterns.
Despite their considerable progress in conventional scenarios, these
code completion methods still struggle to address the challenges
faced by Android developers. During the pre-training stage, Code
LLMs only consider the nearby context of the code to be completed,
ignoring the relationships between various program components
defined in Android manifest files. Android components such as
Activity and Service have specific definitions and dependencies,
with their lifecycle callbacks typically being interrelated. However,
this information cannot be considered in current Code LLMs used
for code completion. Moreover, while current Retrieval-Augmented
Generation (RAG) approaches can provide more contextual infor-
mation, they typically measure the similarity between methods
through character-level comparisons. However, this metric faces
significant challenges in the Android development environment,
with limitations arising mainly from three aspects. First, Android
development mostly involves multiple programming languages,
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each with distinct keywords and syntax structures. This diversity
may hinder character-level comparisons in identifying similar func-
tionalities across different programming languages. Second, core
function-related methods in Android applications often contain
distinctive yet relatively rare tokens that assist in retrieving rele-
vant implementations. For example, functions related to address
frequently involve keywords in system calls for GPS. Nevertheless,
simple character comparisons struggle to identify these keywords
for more relevant retrieval. Third, Android methods extensively
use standard UI widgets. The same UI widgets often share simi-
lar functional targets, which character-level comparisons may not
specifically focus on.

In this paper, we propose DROIDCODER, a novel Android code
completion framework. DROIDCODER utilizes Android development
features and contextual information of code snippets to enrich RAG
and employs fine-tuning to enable the model to learn how to use
the enriched RAG for more effective code completion. The key in-
sight underlying DROIDCODER is the Android development features
outline the definitions and intents of Android components and UI
widgets, which can reflect the functionality of code snippets to some
extent. Therefore, utilizing these features can facilitate retrieving
functionally similar code. Another key insight is the contextual
information of the code to be completed can provide the model with
more useful information for completion. Furthermore, by providing
both functionally similar code snippets and the context of the code
to be completed, the model can learn to utilize the context of the
code to be completed by understanding the relationship between
similar function code and its context.

To evaluate the effectiveness of DROIDCODER, we select four
benchmark models with different parameter sizes and architec-
tures and two state-of-the-art RAG-based frameworks, namely Re-
poCoder [55] and FT2Ra [14]. In both line-level and multi-line-level
completion scenarios, DROIDCODER significantly improves upon
the base models and outperforms the baselines. For example, in
the line-level scenario, using CodeGPT as the base model, DroID-
CoDER achieves an improvement of 104.02% in Exact Match (EM)
and 28.17% in edit distance (ES). In the multi-line-level scenario,
Dro1pCoDER achieves an ES score of 42.46% on the CodeT5+ model,
whereas the pure RAG and fine-tuning methods only reached 19.76%
and 33.53% on the same model, respectively. Furthermore, following
the previous works [19, 46], we also experiment to evaluate the
quality of the code generated by DrRoIDCODER. The results indicate
that DroiDCODER effectively improves the quality of the completed
code. Specifically, 93.73% of the code generated by CodeT5+ 770M
fine-tuned with DROIDCODER has passed our predefined quality
checks, significantly surpassing the 29.81% achieved by the original
model.

In summary, this paper provides the following key contributions:

e We propose a novel Android code completion framework,
DRro1pCoDER, which integrates information retrieved by
RAG into the fine-tuning process, enabling the model to
better utilize the external code databases for code comple-
tion.

e Different from previous RAG, DroIDCODER flexibly inte-
grates unique Android development features and contextual
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information to enhance RAG, thus significantly improving
Android code completion performance.

e We demonstrate the effectiveness of DROIDCODER through
extensive experiments conducted in diverse code comple-
tion scenarios with models of different architectures and
parameters. The results also indicate that DROIDCODER can
significantly improve the quality of completed code across
different models.

Roadmap. The remainder of this paper is organized as follows:
Section 2 introduces Android development features and explains
their importance for Android code completion. Section 3 details
the design of our proposed framework, DROIDCODER. Section 4
describes our experimental setup, and Section 5 presents the results
of evaluating DROIDCODER in diverse code completion scenarios;
Section 6 discusses internal and external threats, while Section 7 re-
views recent works on code completion. Finally, Section 8 concludes
the paper and discusses future works.

2 BACKGROUND

2.1 Android Development Features

We first introduce the features of Android development and discuss
why it is essential to incorporate this information into Android
code completion.

Configuration Metadata. The Android manifest file includes the
core components of each Android application. This file not only
declares the permission requirements of each application, such as
access to the camera or location data, but also defines Android
components like Activities, Services, Broadcast Receivers, and Con-
tent Providers. The intent actions that these components can re-
spond to are also indicated in the component definitions through
the intent-filter tag. This metadata is essential for understand-
ing the relationships between different Android components, thus
providing more comprehensive information for Android code com-
pletion.

Lifecycle Callbacks. The lifecycle callbacks specify how Activity
responds to and switches states based on various system or user
events, and they usually share function-related implementations.
For example, the onCreate and onDestory functions correspond to
the initialization and release of an Android component. Specifically,
as shown in Figure 1, the TimelineCallback and Looper initialized in
the onCreate method are released in the onDestroy method. Lifecycle
callbacks typically have a fixed naming pattern, and the functional
targets between the same name methods are similar. Flexible han-
dling of associations and dependencies in the Android lifecycle
callbacks is a crucial way to improve Android code completion.
UI Widget Libraries. In addition to the Android standard library,
Android development relies on various Ul widget libraries [32,
49], such as AndroidX, Material Design, and Jetpack Compose
which uses a declarative paradigm to build interfaces through
@Composable annotations. These libraries provide sufficient inter-
face design elements and interaction patterns. However, employing
these libraries requires developers to compose substantial amounts
of code related to configuration and event handling, thereby intro-
ducing challenges to rapid evolution in Android development [45].
Intuitively, similar widgets often share identical intents. For in-
stance, a left arrow typically relates to back-navigation logic, and
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Vanilla/Playback.java

public void onCreate(Bundle state) {
super.onCreate (state);
Playbackservice (add 0
setVolumeControlStrean(..) ;

public void onDestro
PlaybackService.|
(Ehooper uit();)

super.onDestroy(); }

pemoveTimelineCallbackkthis);

this);

HandlerThread thread = new HandlerThread(..);
thread.start();

mLooper = thread.getLooper();

THandler = new Handler(mlooper, this); }

Figure 1: Example for Associations in Lifecycle Callbacks

the toast is used to display a short message on the screen. Thus, we
can auto-complete the Ul code by recognizing and referring to the
implementations of similar widgets.

Resource Files. Android development also involves static resource
information, such as layout files, drawable files, and animation
definitions. These resources determine the visual presentation of
the application and are embedded in code implementations through
identifiers. Specifically, the implementation of the back-navigation
method contains references to fade-in and fade-out animations.
Similar design goals may use similar resources [58], and these
goals are typically related to the functional implementations, hence
focusing on these elements can also effectively enhance Android
code completion. The resource files and the UI widget libraries
constitute the interface metadata.

2.2 Retrieval-Augmented Language Model and
Code Completion

According to previous works [51, 55], the code completion enhanced
with RAG consists of four steps: indexing, query formation, re-
trieval, and generation. The main insight underlying this approach
is utilizing similar implementations to enhance the pre-trained mod-
els to generate more relevant and accurate results. In the indexing
stage, a retrieval database is established by partitioning the code
files into a collection of code snippets. Section 4.1 provides the
specific workflow and details. In the query formation stage, a query
is constructed based on the code snippet to be completed. In the
retrieval stage, the query constructed before is used for matching
similar or relevant snippets in the retrieval databases. The capabil-
ity and accuracy of the retrieval almost determine the effectiveness
of enhancing the outputs of the model. In the generation stage, the
snippets retrieved before are concatenated with the code snippet to
be completed as a prompt, and the model leverages it to generate
more relevant results. However, it is challenging for the Code LLMs
to integrate different snippets, and poor results are made due to
insufficient contextual information.

3 APPROACH

Figure 2 illustrates an overview of DROIDCODER workflow. The
framework comprises three stages: Relevant Code Retrieval, Con-
text Enhancement, and Fine-tuning. In the Relevant Code Retrieval
stage, we design different retrieval strategies for component-related
code and other code to search for functionally similar relevant
code for code completion in external code databases. Specifically,
we design four retrieval rules for component-related code based
on Android development features and used tokens that are rela-
tively infrequent but highly functionally distinctive to rank the
retrieved methods. The Relevant code retrieval stage can identify
potentially functionally similar relevant methods, facilitate the
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models to better understand the functionality of the code to be
completed, and thereby improve completion performance. In the
Context Enhancement stage, we provide contextual information
for both the functionally similar code and the code to be completed
to establish connections between these two code snippets and facil-
itate the model to better learn how to utilize the knowledge from
similar code and the context of code to be completed to complete
code. Specifically, we enhance the context from various aspects
such as invocation information, lifecycle relationships, resource
identifiers, and in-file information. This information can assist the
model in better understanding the scenarios in which the relevant
code and the code to be completed are used and provide the nec-
essary variables or other contextual information for completion.
Finally, in the Fine-tuning stage, we design a novel loss function
to compel the model to learn how to utilize the functionally rele-
vant methods and contextual information obtained in the previous
two stages for code completion. Through this new loss function,
the model can better integrate this knowledge and enhance code
completion.

3.1 Relevant Code Retrieval

In the Relevant Code Retrieval stage, DROIDCODER utilizes the
Android development features to enhance functional relevant code
snippet retrieval from Android code databases and ranking for the
code snippet to be completed. By retrieving similar methods from
external code databases, RAG can enhance the model context and
improve code completion. However, the effectiveness of RAG in the
context of Android code completion is limited, as character-level
similarity comparisons overlook Android features present in the
code and eventually lead to sub-optimal retrieval results [42, 55].
Thus, we designed a novel retrieval mechanism that incorporates
Android-specific features. Specifically, this stage consists of three
parts: component-related classifier, Android development feature
enhanced retriever, and weighted token reranker.
Component-Related Classifier. Before retrieving the relevant
code, we first construct a classifier to classify whether the code
snippets to be completed are Component Methods that correspond
to Android development features or not, as we have prepared differ-
ent retrieval strategies for such code to obtain more relevant code
comparisons than character-level matching. Specifically, we treat
methods involving lifecycle or UI widgets as Component Methods,
and other methods are treated as General Methods. Given a code
snippet, the classifier first determines if the method is a lifecycle
method of any Android component file defined in the configura-
tion metadata. Then, following the official document, the classifier
further checks whether the code snippet relies on the external
! corresponding to the UI widget. If either of the above con-
ditions is met, the code snippet is considered a Component Method,
otherwise, it is classified as a General Method.

Android Development Feature Enhanced Retriever. After clas-
sifying the code snippet to be completed, we select different retrieval
strategies based on its type to obtain more relevant code snippets.
If the snippet is Component Method, we design four rules based on
Android development features to retrieve the most relevant code

libraries

! Android, AndroidX, Material Design, and Jetpack Compose.
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Figure 2: Approach Overview of DROIDCODER

snippets from the code databases. If the snippet is General Method,
we use the default character-level comparison for retrieval.

Specifically, given a code snippet to be completed that belongs
to Component Method and a code snippet from the code databases,
we compare their similarity based on their relationship with An-
droid components (Rules 1-2), whether they are the same lifecycle
function (Rule 3), and the involved UI widgets (Rule 4). The under-
lying insights are threefold. First, configuration metadata defines
the intents that components can respond to, which reflects the
components’ functionality. Therefore, components that belong to
the same component type or can respond to the same intent are
more relevant. Second, the same type of lifecycle callback is always
invoked in similar scenarios, making them more similar. Finally, the
use of similar UI widgets indicates similar functional requirements
and makes them more related. More specifically, Rule 1 is to exam-
ine whether they belong to the same type of Android components
(e.g. activity, provider). Rule 2 is to see whether the actions under
the <intent-filter> tag of the components they belong to are the
same. Rule 3 is to compare if the two snippets are both lifecycle
methods and if they are lifecycle methods with the same name.
Rule 4 is to compare whether they have the same base and UI
libraries imported, these libraries are Android, AndroidX, Material
Design, and Jetpack Compose library as mentioned earlier. The
more rules that are satisfied, the more similar we consider the two
code snippets to be.

For a code snippet to be completed that belongs to General
Method, we combine two similarity measurements that are widely
used in the existing works [42, 55] to locate similar implementa-
tions from different perspectives. The one is BM25 [39], often used
for computing lexical similarity between the query and document.
And the other one is Jaccard [18], which focuses on the proportion
of shared words.

Weighted Token Reranker. After retrieving relevant code snip-
pets for the code snippet to be completed, we design a novel rank-
ing algorithm based on functional distinctive tokens in methods to
rerank these relevant code snippets. This is because the retrieval
of relevant code primarily considers Android development fea-
tures and does not account for the functional similarity related to
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Table 1: Selected Top Apps For IDF

App #Stars #Commits ‘ App #Stars #Commits
AmazeFileManager 5077 6496 Anki-Android 7911 19106
muzei 4644 2936 WordPress-Android 2916 83560
NewPipe 28796 11214 firefox-android 1631 31293
Rocket.Chat 38954 25564 Signal-Android 24949 14643
ExoPlayer 21497 18873 Joplin 42663 11336

the code logic. Intuitively, different tokens contribute differently
when distinguishing the functionality of various code snippets.
Specifically, some tokens that are relatively infrequent across the
entire code database may have strong functional distinctiveness.
For example, location-related functions (motion track recording,
location sharing, etc.) are accompanied by frequent occurrences of
GPS-related tokens, as they all need to invoke the system permis-
sion of GPS. However, those GPS-related tokens rarely appear in
network-related code snippets. Thus, we can reorder methods func-
tionally using these relatively infrequent but functional distinctive
tokens. Our approach also effectively addresses the issue of differ-
ent programming languages having distinct keywords and syntax
structures in Android development, as these functionally distinctive
tokens are common across different programming languages.

Specifically, we utilize the TF-IDF (Term Frequency-Inverse Doc-
ument Frequency) [5] to realize our idea. TF-IDF is a numerical
statistic that reflects the importance of a token in a document within
a collection of documents. The importance of a token in a document
is directly proportional to its frequency within that document but
inversely proportional to its frequency across the entire corpus. In
our context, we treat each code snippet as a document and collect
the representative open-source APPs as the entire corpus. Then,
we employ the TF-IDF value (i.e., importance) of a token as its
functional distinctiveness. Specifically, we collect ten APPs with
more than 4k stars or 10k commits that are still maintained recently.
Table 1 includes their details. Then we extract all the methods of
each APP and calculate the IDF value of each token ¢ in equation 1,
where N denotes the total number of methods and n; is the count
of methods containing the token ¢.

IDF(t) = log(%> 1)
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Given a code snippet to be completed and a relevant code snip-
pet, we first calculate the TF-IDF value of each token as F;;(t) =
freq(t) = IDF(t) to present the functional distinctiveness of each
token, where freq(t) counts the occurrence of ¢ in code snippets.
For the token that is not included in IDF calculation, we use fuzzy-
wuzzy [2] to find the most similar token as a substitute. Fuzzywuzzy
compares the similarity of two tokens using the Levenshtein dis-
tance algorithm to measure the edit distance between them, and we
choose it for its effectiveness in identifying alternatives that share
the same root word and its impressive efficiency.

After obtaining the functional distinctiveness of each token, we
next compare the functional similarity between the code snippet to
be completed and the relevant code snippet. Intuitively, if the over-
lapping tokens between the two methods have higher functional
distinctiveness and the non-overlapping tokens have lower values,
we consider the two methods to be more similar. Specifically, let Sg
and S; represent the token set of the code snippet to be completed
and the relevant code snippet, the non-overlapping token set is
calculated in equation 2. Then, we calculate the similarity between

these two code snippets as equation 3.
SqaSc = (Sq U Se) \ (Sqg N Se) (2

2sie(Sya8e) Fri(si) = Xsje(syns,) Fri(s))
score =

2see(Squs,) Fri(sk) ®
Through equation 3, the more important the overlapping tokens are
and the less important the non-overlapping tokens are, the more
similar the methods are. We use normalization to eliminate the
impact of the number of tokens. Algorithm 1 presents the process of
relevant code retrieval. Given a code snippet  to be completed, We
first classify it (Line 1). Then, if the ¥ is General Method, we utilize
BM25 and Jaccard to retrieve the Top-K relevant code snippets
(Lines 2-5). Otherwise, if the ¥ is Component Method, we employ
four Android development feature-related rules to retrieve the Top-
K relevant code snippets (Lines 6-9). Finally, we rerank the relevant
code snippets based on functional distinctive tokens (Line 10).

Algorithm 1 Relevant Code Retrieval

Input: Snippet to be Completed ¥, Code Retrieval Databases D
Output: ReRanked Relevant Results R
1. F.type « classify(F)
2: if F.type == "General Method" then
3 simpy, < BM25(F, D)
4 simjqe < Jaccard(F, D)
5. relevant « Rank(simpp,, simjac, TopK)
6
7
8
9

> Calculate BM25 similarity
> Calculate Jaccard similarity
> TopK Results
: else if F.type = "Component Method" then
sim « multiAndroidSim(F, D)
relevant «— Rank (sim, TopK)
: end if
10: R « reRank(F, relevant)
11: return R

> Android Rules Similarity
> TopK Results

> Rerank TopK Results

3.2 Context Enhancement

During the Context Enhancement stage, we provide in-project
context for both the functionally similar code and the code to be
completed, making the model understand the scenarios between
them and the necessary information for completion (such as global
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variables). This is because the functionally similar code provided
in the previous stage is extracted from other code applications and
may differ significantly from the in-project context of the code to
be completed. Therefore, we need to provide the in-project context
of these two parts to assist the model in establishing connections
between them. Otherwise, without the in-project context of relevant
methods and the code to be completed, the model may tend to
directly clone instead of learning how to transfer the knowledge of
functionally similar code to the code to be completed. For example,
paired lifecycle callbacks in Android can offer useful information
for code completion, such as onCreate methods could provide useful
context for onDestroy methods. Specifically, we provide in-project
context for the code completion from four perspectives: invocation
information, lifecycle relationships, resource identifiers, and in-file
information.

Invocation information. The caller methods of the functionally
similar code (i.e., the callee method) can provide more context in-
formation which facilitates the model to understand the scenario of
the functionally similar code, thereby enhancing code completion.
Paired lifecycle callbacks. Lifecycle callbacks mostly appear in
pairs and are interrelated. For instance, the resources released in the
onDestroy method are typically initialized in the onCreate method.
Thus we use the symmetric method for each lifecycle method.
Resource identifiers. Users interact with Android applications
through the interface, making drawable, layout, and animation
resources highly frequently used. If methods have similar functional
intents, they may load similar types of resource identifiers. Utilizing
this, we directly query within the project for methods with the same
name and provide their used resource identifiers to the code to be
completed.

In-file information. It is worth noting that in-file details, including
other methods, global variables, and libraries, can provide direct
information that is involved in the results. Specifically, we first
calculate the method signatures and global variables within the file
that have the highest semantic similarity to the name of the code to
be completed and provide them as context to the model. We employ
the cutting-edge calculation method Sentence-BERT [38], which
is widely used in previous works [13, 33, 54] to match semantic
similarity, as the method and variable names are consistent with
human reading habits. Finally, we also provide the external libraries
used within the file to the model.

After obtaining all the context for the code to be completed, the
next step is fine-tuning the model using this information. Following
previous works [55], we organize this information into training
data using templates. Specifically, we structure the training data in
the order of relevant code, context information, task instructions
that indicate code completion, and code to be completed.

3.3 Fine-tuning

In the fine-tuning stage, we utilize the previously prepared training
data to fine-tune the model. Specifically, the training data consists
of two parts: the code snippet to be completed with the task instruc-
tions (denoted as C), and the relevant code snippets and context
information (denoted as M). The underlying insight of including M
in the fine-tuning process is that learning how to utilize the infor-
mation in M can improve code completion intuitively. To realize
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our idea, we design a novel loss function to encourage the model
to utilize the information in M.

Specifically, we compare the loss value before and after adding
M. If the inclusion of M results in an increased loss, it indicates that
the model is not effectively utilizing the information in M. In this
case, We increase the coefficient of the loss function (i.e., increase
the loss) to make the model pay more attention to how to integrate
the information from M. More specifically, let £(C) represent the
loss on C and £(M U C) represent the loss on M and C, where £
is the cross-entropy loss. The final loss is given below as follows:

L=>0+max(L(MUC) - L(C),0)x LMUC) 4)

In equation 4, we quantify the difference between the two loss
functions to adjust the coefficient of L(MUC). LIMUC) > L(C)
indicates that the model is not effectively utilizing the information
in M. Thus, we increase the coeflicient to make the model focus
more on learning to integrate M. On the contrary, when £(M U C)
is not greater than £(C), the result of the loss function is equal to
L(MUO).

4 EXPERIMENTAL SETUP

We evaluate DROIDCODER on the following research questions:

o RQ1: How effective is DROIDCODER in different Android code
completion scenarios?

e RQ2: How do different components within DRoIDCODER affect
its overall effectiveness?

e RQ3: Can DroIDCODER generate higher-quality code compared
to existing methods?

4.1 Benchmarks

Datasets. Android apps iterate and update quite rapidly, making it
challenging to keep the previous datasets up to date with Android
library APIs. Also, some open-source apps have converted to closed-
source or stopped maintenance in previous datasets. Therefore, we
carefully construct our benchmark by following the workflow in
Repocoder [55]. We randomly select 78 Android app repositories
from Github that satisfy the following criteria: more than 200 stars,
open-source license, primarily written in Java or Kotlin, and actively
maintained [53], specifically with persistent commits in recent six
months. Complete copies of the repositories were archived for
analysis and experiments as of February 2024. Additionally, our
dataset includes applications of various scales, including large-scale
applications with around 20K lines of code.

Following the previous work [42], retrieving relevant informa-
tion is more efficient within similar applications. Therefore, we
perform retrieval only from the code repositories of similar types of
applications, which can greatly improve the efficiency of retrieval.
We classify these applications based on descriptions from their offi-
cial repositories and their tag in Google Play. To ensure sufficient
training data [36, 37] and avoid potential class imbalance issues
during fine-tuning [44, 56], we selected categories with at least 10
applications and prepared 10 apps with the highest number of stars
and commits for each category for the experiments. Specifically,
we selected the following four types: communication, life, notes,
and multi-media.
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Table 2: Experimental Subjects

D APP CATEGORY TAG Main Language
Al Infinity-For-Reddit Communication train Java
A2 thunderbird-android Communication train Kotlin
A3 FairEmail Communication train Java
A4 IRCCloud Communication train Java
A5 tutanota Communication train Kotlin
A6 Simple-Contacts Communication train Kotlin
AT android-oss Communication train Kotlin
A8 Tusky Communication test Kotlin
A9 RedRead ication test Java
Al10 Xtra Communication test Kotlin
All neutrinote Notes train Java
A12 Notally Notes train Kotlin
Al13 Omni-Notes Notes train Java
Al4 Simple-Notes Notes train Kotlin
Al5 MyBrain Notes train Kotlin
Al6 tasks Notes train Kotlin
A17 notes-android Notes train Java
Al18 aaf-easydiary Notes test Kotlin
A19 simplenote-android Notes test Java
A20 Compose-ToDo Notes test Kotlin
A21 Noice Multi-Media train Kotlin
A22 AntennaPod Multi-Media train Java
A23 jellyfin-android Multi-Media train Kotlin
A24 RetroMusicPlayer Multi-Media train Kotlin
A25 vlc-android Multi-Media train Kotlin
A26 SeriesGuide Multi-Media train Kotlin
A27 Voice Multi-Media train Kotlin
A28 Simple-Gallery Multi-Media test Kotlin
A29 cloudstream Multi-Media test Kotlin
A30 vanilla Multi-Media test Java
A31 money-manager-ex Life train Java
A32 Catima Life train Java
A33 unstoppable-wallet Life train Kotlin
A34 runnerup Life train Java
A35 uhabits Life train Kotlin
A36 Transportr Life train Kotlin
A37 Simple-Calendar Life train Kotlin
A38 habitica-android Life test Kotlin
A39 OpenTracks Life test Java
A40 Photok Life test Kotlin

Before fine-tuning, we randomly divide each type of applica-
tion into a 7:3 ratio for training and testing sets. During relevant
code retrieval, we perform the retrieval only from the codebase
constructed from the training set. This aligns with the practical
scenario in the early development stage where the current appli-
cation under development lacks sufficient methods and requires a
substantial amount of code. Also, considering that most models are
not pre-trained under the Kotlin language projects, we ensure at
least two of the test apps in each category are written in Kotlin to
avoid performance bias. All details of the subject app repositories
can be found in Table 2.

Completion Scenarios. Following previous code completion bench-
marks and android features [14, 42, 55], we consider line-level code
completion as well as the more challenging and realistic scenario
of multi-line-level code completion.

Specifically, we first extract all methods from each app to cover
different cases as much as possible with the help of JavaParser [15],
KasTree [1], and Kotlinx [3]. Following previous studies [8, 43],
we discard methods with bodies less than 3 lines or more than 60
lines, which account for about 5% of all methods. Analyzing all the
remaining methods in the training set, the median length of the
method body is 10, and the average is 11.08. Therefore, considering
the programming habits of developers and eliminating the random
bias, we always set the last 5 lines of the method body (or all of
them if the method body is less than 5 lines) as the multi-lines to be
completed. To avoid the complexity of random selection and ensure
consistency, we evaluate line-level completion by considering only
the first line of the multi-line results. Additionally, for line-level
completion, we followed previous work [55] that used only single
lines of code that contain at least five tokens and are not comments.
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Finally, we double-check each test case to make sure there are no
exact duplicate samples, avoiding performance bias, and removing
all cases with @Deprecated annotation. After filtering, the training
dataset comprising approximately 1.5 million lines of code, 10k files,
and 30k methods. And the test dataset contains about 428k lines of
code, 3k5 files, and 5k methods.

Cross-category Scenario. To conduct a more comprehensive eval-
uation, we considered cross-category scenarios. This involves using
models trained on one type of application to perform code comple-
tion on a test set from a different type of application. This more
challenging scenario typically occurs when the external databases
contains only a small portion of code snippets closely relevant to
the application being developed. And this evaluation includes about
500k lines of code, 5k files, and 5k methods.

4.2 Baselines

Base Models. To better examine our approach, we use code LLMs[57]
with diverse architectures[46] and parameter scales, which are
widely used in previous works to fine-tune and evaluate.

e CodeT5+ [47]: CodeT5+ belongs to the encoder-decoder model
category. We select two versions that comprise 220 million or
770 million model parameters.

CodeGPT [31]: CodeGPT is a GPT-based model, specifically
designed for code-related tasks. It is worth noting that CodeGPT-
adapted, has been widely used in previous works [14, 42], thus
we select it for more comparative experiments.

StarCoder [23]: StarCoder is also decoder-only code LLM and
pre-trained on 1 trillion tokens sourced from the Stack. Consider-

ing our Android scenario, we conduct experiments on StarCoderBase-

1B, a model trained on over 80 programming languages.

Compared Approaches. Besides, we also compare DROIDCODER
with two state-of-the-art code completion approaches:

e RepoCoder [55]: RepoCoder is a state-of-the-art RAG approach
and makes effective use of repository-level information for code
completion. To ensure consistency, we choose the same model,
GPT-3.5-Turbo, as in RepoCoder. It is a commercial generation
model with billions of trainable parameters and has been pre-
trained on an extensive code corpus.

e FT2Ra [14]: FT2Ra is the latest retrieval-augmented code com-
pletion approach inspired by fine-tuning and outperforms previ-
ous baselines. Similarly, we compare our results with CodeGPT-
adapted, as this model was selected by the original paper.

Configurations. To ensure fairness, we perform full-parameter
fine-tuning for CodeGPT and CodeT5+. For StarCoder, we use
parameter-efficient fine-tuning with LoRA [16] due to resource
limitations, while the r is set to 8 and « is set to 16 to follow the
original paper [23]. For the outputs except ChatGPT, we use beam
search instead of sampling to ensure the results are idempotent and
reproducible, with the number of beams set to 5, as suggested by
previous works. According to the empirical results (c.f. Section 5.2),
we set TopK = 10. All experiments are conducted on a workstation
with Intel(R) Xeon(R) Gold 6133, 128GB memory, and two RTX 4090
GPUs, running Ubuntu 20.04.

Evaluate Metrics. Following previous works [14, 30, 42, 55], we
choose Exact Match accuracy (EM) and Levenshtein Edit Similarity
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(ES) [21] as metrics for code completion. In multi-line code comple-
tion, the EM metric requires that every line is perfectly matched.
In practice, we return the percentage of successful line-level exact
matches as EM score in multi-line code completion. We denote it
as EM”* in the multi-line level scenario.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Effectiveness on Completion Scenarios

In this RQ, the primary objective is to evaluate the effectiveness of
Dro1pCoDER in code completion on different completion scenarios.
We conduct a comparative analysis of DROIDCODER against three
base models and two state-of-the-art code completion approaches
on 40 APPs outlined in Section 4.1 and Section 4.2, examining
performance at both line and multi-line level. Results are detailed in
Table 3 and Table 4. Each row in the table represents the completion
performance of different methods or models on the same application.
Each column represents the completion performance of the same
method or model across all applications.

Line-level Completion. From the Table 3, we have the follow-
ing observations. First, compared to the base models, our method
significantly improves the code completion performance on An-
droid code. Specifically, compared to the original CodeT5+700M,
StarCoderBase-1B, and CodeGPT models, after fine-tuning by our
method, the average EM and average ES of them across all test apps
increased from 5.66 to 19.85 and 18.73 to 42.69 respectively. Second,
our method outperforms the state-of-the-art code completion meth-
ods. Notably, compared to FT2Ra, CodeGPT fine-tuned with our
method achieves an average improvement of 104.02% in EM and
28.17% in ES. This result demonstrates the effectiveness of DroiD-
CoDER at line-level Android code completion. This also suggests
that DROIDCODER has a better retrieval capability. Unlike FT2Ra,
which relies solely on character-level similarity for retrieval, DRoID-
CopEeRr enhances the retrieval process using Android development
features to extract more functionally relevant code snippets. By
further ranking these snippets with functionally distinctive tokens,
DRro1pCoDER provides the model with more functionally similar
code snippets in the context of Android code completion.
Multi-line-level Completion. Table 4 presents the results for
multi-line-level completion. From the table, we can observe a sim-
ilar trend to line-level completion. Specifically, DROIDCODER im-
proves the performance on three models across all test apps. After
fine-tuning CodeT5+770M using DROIDCODER, the average EM”
and average ES across different applications improved by 237.32%
and 185.08% respectively. Additionally, we observed that the orig-
inal CodeGPT model achieved only 0.44 in EM* and 7.59 in ES,
which is a decrease of 98.36% and 61.59% compared to RepoCoder-
enhanced ChatGPT. However, after fine-tuning with our method,
CodeGPT showed an improvement of 27.50% in EM* and 35.98% in
ES compared to RepoCoder+ChatGPT. This further demonstrates
that our method can effectively enhance the model’s performance in
multi-line code completion. The relevant code retrieval and context
enhancement can also improve the performance of code completion
in more challenging scenarios that multi-line code to be completed,
accelerating the development of new apps from scratch.
Cross-category Scenario Completion. we further evaluate the
multi-line-level effectiveness of DROIDCODER in a cross-category
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Table 3: Results of Line-level Completion(%)

DrOIDCODER FT2Ra RepoCoder Original
Repo.
P CodeT5+ 770M CodeT5+ 220M StarCoderBase-1B CodeGPT CodeGPT ChatGPT CodeT5+ 770M StarCoderBase-1B CodeGPT
EM ES EM ES EM ES EM ES EM ES EM ES EM ES EM ES EM ES
aaf-easydiary 24.78 50.08 22.17 46.87 20.87 4955 12.61 37.96 244 28.80 217 19.73 8.70 24.84 10.43 30.93 043 531
Compose-ToDo 14.12 46.57 1118 4534 14.71 45.21 7.06 26.82 2.33 8.45 2.35 2078 5.88 2654 059 15.73 058 639
simplenote-android 25.27 51.26 24.46 48.10 21.47 42.94 17.12 38.80 11.88 33.72 4.08 20.67 18.75 35.26 0.82 16.20 027 6.58
cloudstream 18.80 42.98 18.29 41.72 18.12 40.78 7.86 25.47 093 17.56 1.20 16.07 7.86 23.57 2.74 19.04 017 495
Simple-Gallery 26.30 49.68 2143 43.18 21.10 40.77 10.39 27.90 1.64 18.27 1.95 16.77 455 25.24 617 2136 032 5.52
vanilla 30.71 54.18 26.63 51.66 23.10 48.06 17.39 38.42 1163 32.07 6.79 21.88 13.59 29.87 027 11.46 027 5.56
habatica-android 25.91 47.42 2375 46.06 23.08 4454 12.01 27.92 081 18.48 2.43 18.23 9.58 26.88 6.21 22.58 013 610
OpenTracks 25.42 52.59 2375 49.54 2233 48.46 16.86 41.04 12.82 40.00 5.94 2259 14.96 30.14 475 19.07 0.24 6.00
Photok 27.27 51.60 24.68 50.20 27.27 52.90 9.09 29.00 2.56 14.19 3.90 2257 455 23.58 9.09 27.04 0.65 587
RedReader 28.79 52.59 27.97 51.07 3151 52.00 2251 42.10 10.10 37.80 477 2034 2278 38.99 041 15.09 0.14 577
Tusky 22.69 48.86 2038 44.70 2038 43.90 5.77 2135 5.62 22.84 5.96 23.46 5.96 21.24 16.35 4175 0.19 555
Xtra 25.29 45.77 2238 43.20 22.97 42557 13.66 34.68 11.86 33.27 436 20.95 5.23 23.85 19.77 34.26 029 6.19
Avg. 24.61 49.47 22.26 46.80 22.24 45.97 12.69 32.62 6.22 25.45 3.83 2033 10.20 27.50 647 22.88 031 5.82
Table 4: Results of Multi-line-level Completion(%)
DRrOIDCODER FT2Ra RepoCoder Original
Repo.
P CodeT5+ 770M CodeT5+ 220M StarCoderBase-1B CodeGPT CodeGPT ChatGPT CodeT5+ 770M StarCoderBase-1B CodeGPT
EM* ES EM* ES EM* ES EM* ES EM* ES EM* ES EM* ES EM* ES EM* ES
aaf-easydiary 52.15 45.14 4932 40.59 44.16 42.22 3336 27.65 9.74 18.44 24.12 19.30 16.94 17.14 12.39 1166 0.46 7.84
Compose-ToDo 54.16 46.48 51.61 4251 44.90 36.86 34.42 24.70 11.40 12.53 23.46 17.77 18.29 16.58 11.19 9.28 030 6.46
simplenote-android 55.24 47.98 51.63 42.08 4335 36.86 30.11 23.10 15.22 20.02 28.76 2254 19.57 16.61 13.48 10.59 0.68 7.99
cloudstream 53.12 41.64 50.60 38.98 44.98 37.47 31.52 22.54 10.46 14.68 2273 15.68 16.80 15.24 1156 9.44 0.12 6.51
Simple-Gallery 57.06 46.19 51.40 39.21 45.06 34.04 31.97 21.27 11.37 17.95 25.65 16.55 17.35 15.21 1244 8.90 0.90 6.94
vanilla 53.43 47.56 48.85 45.74 4356 40.99 36.67 33.03 13.95 18.54 24.40 2125 1611 17.14 1141 10.40 039 8.27
habatica-android 55.73 45.30 53.17 42.17 46.03 38.01 30.11 22,59 12.70 16.30 28.75 23.03 17.04 17.24 1249 10.17 0.40 7.60
OpenTracks 52.68 46.89 49.67 44.90 45.26 4147 38.18 32.85 17.72 21.98 2736 23.03 1377 15.73 1073 1122 040 8.87
Photok 55.30 47.66 49.92 42.63 48.68 45.44 27.88 22.81 10.51 17.46 24.86 20.10 15.00 16.35 1444 1130 041 6.79
RedReader 57.26 49.41 53.96 46.12 50.57 45.33 43.00 33.68 16.21 20.73 28.75 2141 18.35 16.60 1479 10.98 0.70 8.13
Tusky 54.66 46.20 50.47 41.01 45.61 38.73 23.69 18.84 10.79 15.52 26.90 21.69 12.22 14.10 20.23 16.30 0.21 7.55
Xtra 56.55 44.83 54.34 41.72 49.16 39.45 39.94 2935 11.23 33.61 27.73 20.23 15.49 16.76 12.48 9.84 0.26 8.13
Avg. 54.78 146.27 51.22 4246 4644 40.05 34.26 26.87 12,61 18.98 26.87 19.76 1624 16.23 13.03 10.82 0.44 7.59
EM* Heatmap ES Heatmap 60
Password-Store 32.64 BRCIGEEN 22.84  19.08 GpAcl 43.28 35.77 43.81 24.55
BCR 37.84 | lagal 27.29 | 18.59 44.62 40.27 38.84 45.34
fcitx5 35.52 34.01 19.45 19.06 22.41 36.58 33.48 28.03 31.68 50
Feeder 39.15 36.27 27.71 45.28 41.48 3351 44.44
Iconify 44.77 FEENGEH 40.07 31.49 [ AP 60.25 58.94 WENE 53.91 -40
MaterialFiles 44.69 [SEVAN 34.22 24.85 19.42 42.67 35.39  43.90
Neo-Backup- 40.86 31.38 35.95 25.05 . 16.22 15.22 3495 35.86 30.20 34.48 -30
QuickNovel 41.81 38.89 | lacnbd 24,69  19.53 46.58 40.27 33.09 43.36 22.91
Trail-Sense 43.10 37.54  19.79 25.49 19.39 44.03 41.36 33.49 41.08 23.91 20
VinylMusicPlayer 44.07 iEiVc 23.47  30.00 CERCURECLEW S 40.08 BEINYAN 43.54 24.88 27.00
Avg. 41.83 36.33 13.24 24.31 19 88 46.81 43.31 35.26 43.39 24.92 23.81
w 2N 13! oW oM QM 33 A8 oW
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Figure 3: Results on multi-line-level code completion under cross-category scenarios(%).

scenario. This is a more challenging scenario and one that is likely to
occur in practice because the external code databases may contain
only a small portion of code snippets relevant to the application
being developed. Specifically, from the 78 collected applications, we
selected 10 with the highest star and commit counts from each of the
other types. Figure 3 presents the results of different baselines on
different apps. The color gradient from blue to white to red indicates
performance improvement, with deeper red representing better
performance. Specifically, the CodeT5+770M model fine-tuned with
DroipCobpER showed an increase in the average EM* score from
19.88% to 55.84% compared to the original model. Compared to the
state-of-the-art fine-tuning method FT2Ra, our method improved
the average ES score by 69.98% when fine-tuning CodeGPT.
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Case Study on multi programming languages. Tables 3 and 4
indicate that our method can perform code completion for applica-
tions written in Java or Kotlin. Specifically, we also found that our
method enables the model to complete code by utilizing function-
ally similar functions from another code database. Figure 4 presents
a case in which the code to be completed is written by Kotlin but
relevant code is written by Java. From the figure, we found that
our method (using CodeT5+ 770M as the base model) successfully
utilizes Java code to complete functions in Kotlin. However, com-
mercial models like Claude3-Haiku [4] and the original base model
CodeT5+ 770M both fail in this task.
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(ID: Xtra/491 h

override fun observe(owner: LifecycleOwner, observer: Observer<in T>) {
if (hasActiveObservers()) {
Log.w(TAG, "Multiple observers registered but only one will be
notified of changes.")

}

super.observe(owner, Observer<T> { t ->

@MainThread
public void observe(@NonNull LifecycleOwner owner, @NonNull final
Observer<? super T> observer) {
if (hasActiveObservers()) {
Timber.w("Multiple observers registered but only one will be
notified of changes.");

}

super.observe(owner, new Observer<T>() {
@override
public void onChanged(@Nullable T t) {
if (pending.compareAndSet(true, false)) {
observer.onChanged(t);

}
s

if (pending.compareAndSet(true,
observer.onChanged(t)

false)) {

}
1
}

if(!owner.lifecycle.currentState.isAtLeast(Lifecycle.State.STARTED)) {
return@Oobserver

}

observer.onChanged(t)

1

observer.onNext(t)

h

return this

\_ ),

Figure 4: Example for different programming languages.
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Figure 5: Ablation study at line-level completion.

Answer to RQ1: DRoIDCODER outperforms all the baselines and
base models for line-level and multi-line-level code completions.
In cross-category scenarios, DROIDCODER also achieves the best
performance.

5.2 RQ2: Ablation Study

Contribution of Each Component. We first study the contri-
bution of different components in DRoIDCODER Specifically, we
consider four variants of DRoIDCODER: without Retriever, without
Reranker, without Context Enhancement, and without RAG during
Fine-tuning (i.e., pure fine-tuning). To ensure consistency while
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Figure 6: Ablation study at multi-line-level completion.

taking into account computational resources, we select CodeT5+
220M for ablation studies. Figure 5 and Figure 6 present the ab-
lation experimental results for each component of DROIDCODER.
The different lines in the chart represent various variants of the
DroipCobER. The x-axis represents different apps in the test set,
with the final point on the x-axis showing the average of all results.
From the figures, we have the following observations.

First, each module contributes to the effectiveness of DRoID-
CopEeR. When any single component is removed, the effectiveness
of DrROIDCODER decreases. Specifically, removing the retriever,
reranker, and context enhancement, and using only fine-tuning
leads to an average decrease in EM score at line-level code comple-
tion by 23.54%, 32.17%, 13.22%, and 44.52%, respectively. Second,
reranking the retrieval results using relatively infrequent but highly
distinctive tokens is crucial. Specifically, from the figures, we can ob-
serve that removing the reranker results in DROIDCODER achieving
the worst or second-worst performance on average across differ-
ent scenarios. The results may suggest that the functionality of
Android methods exhibits token cohesion. By using specific to-
kens, we can effectively cluster different methods, allowing us to
retrieve methods that are more functionally similar. Third, we
found that removing the retriever always results in a larger perfor-
mance decline than removing context enhancement across different
scenarios. This demonstrates that functionally similar functions
contribute more significantly to code completion and the model
tends to use or imitate functionally similar functions during comple-
tion rather than relying on the provided context. This phenomenon
may suggest relevant code snippets are easier for the code model
to understand, whereas the provided context may be more loosely
structured (including variables, identifiers, and code snippets), mak-
ing it relatively difficult for the model to utilize this information
effectively. How to better utilize this part of the information will be
the focus of our future work. Finally, incorporating RAG during
fine-tuning is essential, as using fine-tuning alone almost leads to
the worst results in the figures. This may be explained that integrat-
ing enhanced knowledge during fine-tuning significantly improves
the model’s ability to utilize this knowledge during inference.
Impact of the Choice of TopK. To evaluate the performance of
DRro1pCoDER by the value of TopK, we set it to 5, 10, 20, and 50
as the previous work [14] suggested. The results are presented in
Figure 7, illustrating that the choice of TopK is not highly sensitive
to the completion results. The smaller TopK may lead to the ne-
glect of the function-related tokens, while a larger TopK makes the
approach heavily dependent on the quality of the IDF dictionary.
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Figure 7: Results at line-level completion under different

Topk. o
Table 5: Compilation Assurance Rate

Model Positive Rate
CodeT5+ 770M + DROIDCODER 93.73%
CodeT5+ 220M + DROIDCODER 91.50%
StarCoderBase 1B + DROIDCODER 84.99%
ChatGPT3.5 Pure RAG (RepoCoder) 83.53%
CodeT5+ 220M Pure Fine-Tune 65.78%
CodeT5+ 770M 29.81%
StarCoderBase 1B 18.86%
CodeGPT 5.71%

Considering the aforementioned impacts and the efficiency, we set
TopK to 10.

Answer to RQ2: Each component in DROIDCODER positively
contributes to its code completion performance. Reranking and
integrating functionally similar code snippets with context dur-
ing fine-tuning are crucial. Functionally similar code snippets are
more beneficial for code completion than contextual information.

5.3 RQ3: Completed Code Quality

The fundamental role of code completion is to accelerate the de-
velopment process and assist developers in implementing require-
ments. Therefore, it is also essential to evaluate the quality of gener-
ated code from code completion approaches. Specifically, we assess
the quality of the completed code by checking the following two
conditions: First, the completed code snippet must pass compilation
checks. Second, all method parameters must be used at least once.
There are other conditions that can evaluate code quality, but we
consider these two to be among the most fundamental. When both
conditions are met, we consider the completed code to have passed
our quality evaluation. Then, we define the Positive Rate as the
percentage of all completed code that passes both checks and utilize
this metric to measure the quality of completed code.

Table 5 shows the Positive Rate of different methods. From the
table, we found that our method significantly improves code qual-
ity. Specifically, after fine-tuning with our method, the Positive
Rate of original CodeT5+ 770M and StarCoderBase 1B increased by
214.42% and 350.63%, respectively. Notably, after fine-tuning with
DroIDCODER, the Positive Rate of these two models improved from
being significantly lower than ChatGPT3.5 to surpassing it. This im-
provement may be because the model fully learns the syntax rules
of different programming languages from closely relevant snippets
and other contextual information during fine-tuning while also
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ID: simplenote-android/306
@0verride
public void setTitle(CharSequence title) {
if (getSupportActionBar() != null) {
@verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
receivedText = ShareUtil.extractSharedText(getIntent());
(@Nullable
final ActionBar actionBar = getSupportActionBar();
if (actionBar != null) {
getSupportActionBar().setTitle(R.string.append_to_note);
e(TAG, "SupportActionBar is null. Expected toolbar to be present to set a title.");}
binding.activityNotesListView.searchToolbar.setSubtitle(receivedText);
}
}
getSupportActionBar().setTitle(title);
} else {
Log.e(TAG, "SupportActionBar is null. Expected toolbar to be present to set a title.");
}
}
getSupportActionBar etTitle(title)
}
}
2AsUpEnabled(true);
wTitleEnabled (t
getsur itle);
U J

Figure 8: Example for completed code by different methods.

understanding other coding practices, such as the use of method
parameters.

Case Study. Figure 8 shows an example that includes the comple-
tion results of three methods: DRoIDCODER, Claude3-Haiku, and
the original CodeT5+ 770M model. As shown in Figure 8, compared
with the original output and the ground truth, our completion
result not only completes successfully but also has an additional
log, which comes from the similar implementation in other apps
retrieved. Even the recent commercial generation model Claude3-
Haiku just completes the essential code. Code completion should
provide reliable code in addition to basic function implementations.

Human Study. Following the previous work [24], we also con-
ducted human evaluation to inspect the code quality of DroID-
CoDER’s outputs. We invited six graduate students with over one
year of Android development experience to participate in our hu-
man study. We randomly selected 60 samples in the test datasets
and created an online questionnaire. For each sample, we included
the code snippet to be completed and two completion outputs.
Specifically, the participants were not informed whether these two
completion outputs were generated by the original CodeT5+ 770M
model or by DROIDCODER, which also utilized the CodeT5+ 770M
as its base model. They were asked to rate each completion output
on a scale of 1 to 5, with 1 meaning completely unsatisfied and 5
meaning fully satisfying completion.

The questionnaire results show that DROIDCODER’s outputs
achieved an average score of 4.39, while the original model’s out-
puts only received 2.97. In all the samples, only 8.33% showed
DRro1pCODER scoring lower than the original model, while in the
remaining 91.67%, the scores of DROIDCODER were either higher
than or equal to the original model. This further demonstrates the
effectiveness of DROIDCODER in practical Android development.

The Fleiss’ Kappa score [12] for this questionnaire is 0.61, indi-
cating "substantial agreement” among the participants. Individual
scoring preferences may have introduced some relative differences.
For example, some participants tended to give lower scores, while
others preferred to select mid-range values.
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Answer to RQ3: DROIDCODER can significantly enhance the
quality of code completion compared to baseline models, surpass-
ing existing methods. This indicates that DROIDCODER is better
suited for practical development, assisting developers more ef-
fectively.

6 THREATS TO VALIDITY

Internal Threats. The first internal threat relates to potential data
leakage, which is common in recent works [33, 46]. To mitigate
this threat, we ensure at least two Kotlin projects for each category
of test apps since the datasets used to train the code LLMs we
select do not include Kotlin projects. Additionally, the relatively
poor performance of direct inference on pre-trained code LLMs
can prove that there is little data leakage. Our effective results
(RQ1) also illustrate consistent performance across various apps on
different code LLMs.

Another possible internal threat is our choices of models and
datasets. To mitigate it, we use similar criteria as in RepoCoder and
choose more recent data whenever possible. Also, we select three
widely used pre-trained models that share different architectures,
specifically CodeGPT, CodeT5+, and StarCoder. We also plan to
evaluate our work on larger code LLMs such as CodeLLaMa in
the future. However, achieving better results on small-parameter
models is still worth exploring. Our categories of apps and the
choice of a 7:3 ratio for training and testing sets introduce a potential
concern. Therefore, we experiment with another ten different apps
on the same models and training set (Section 5.1), and the results
illustrate our approach still achieves similar improvements.
External Threats. Our implementations and evaluations are spe-
cific to Android development. However, our insights and method-
ology can be transferred to other research problems. Specifically,
our approach highlights the importance of selecting the most ap-
propriate context based on the problem and exploiting features
that facilitate retrieval and ranking to enhance RAG. This can sig-
nificantly improve the performance of LLMs. Another important
finding is that, traditionally, RAG relied solely on character similar-
ity for ranking. But in many problems, ranking based on distinctive
tokens can be more effective.

7 RELATED WORKS

Code completion has been continuously studied. Here, we focus on
recent works, as they have shown superior potential.

7.1 Code LLMs for Code Completion

Code completion, as a key technology for enhancing efficiency,
has been widely adopted in modern integrated development en-
vironments (IDEs) [6, 20, 52]. With significant advances in pro-
cessing with large language models (LLMs) and pre-trained tech-
niques [11, 27, 28], recent research has begun to explore their appli-
cation to code completion [9], including Codex [57], CodeGen [34],
CodeT5 [50], CodeT5+ [47], StarCoder [23] and CodeLlama [40].
These models treat code as sequences of tokens and markedly dif-
fer from previous works that utilize structured information such
as abstract syntax tree (AST) [17, 20, 22, 26, 48]. Although these
models have already achieved impressive success in conventional
code completion [8], they still face challenges in specific domains or
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frameworks [35], especially the Android development environment.
Firstly, neglecting the relationships between Android callbacks and
UI widgets reduces code completion effectiveness. Secondly, multi-
ple programming languages increase the difficulty of generalization
and comprehension for the model. In general, improving the under-
standing of contextual information is still important to assist the
code auto-completion task.

7.2 Repository-Level Code Completion

As software development scales up and code repositories become
increasingly complex, contexts are no longer sufficient for code com-
pletion. Therefore, recent research has begun to explore how to in-
tegrate various information in the entire repositories to improve the
code completion results. RepoBench [29] and CrossCodeEval [10]
establish comprehensive benchmarks for evaluating the capabilities
of the repository-level code completion. While ReACC [30] and
RepoCoder [55] mainly focus on similar code snippets, GTNM [25],
RLPG [41], Repoformer [51] and RepoHyper [35] investigate spe-
cific approaches for utilizing additional repository-level informa-
tion. The main insight behind these approaches is capturing in-
formation from the same file and files in the same repository to
enhance the pre-trained models. However, the Android framework
has various unique features such as lifecycle callbacks and UI wid-
gets, which are more difficult to utilize than the repository-level
information such as the repository name and file names, thus un-
derstanding their informative relationships is crucial for Android
code completion.

8 CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel framework, DROIDCODER, that
leverages Android development features and contextual informa-
tion of code snippets to enrich the RAG and integrates it during
fine-tuning to enable the model to learn how to use the enriched
RAG for more effective code completion. The experimental results
demonstrate that DROIDCODER can significantly improve the effec-
tiveness of Code LLMs on code completion under Android devel-
opment both at line-level and multi-line-level. DROIDCODER also
outperforms two state-of-the-art code completion tools based on
retrieval-augmented language models under different completion
scenarios and improves the quality of the completed code.

In the future, we will continue to focus on utilizing and integrat-
ing diverse information sources, such as git commits, which are
short code snippets accompanied by descriptions that we believe
can be useful for code completion. Additionally, we aim to trans-
fer our approaches to various other software engineering tasks,
particularly in industrial scenarios.

9 DATA AVAILABILITY

Our replication package? is publicly available.
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