
Enhancing Fault Localization in Industrial Software
Systems via Contrastive Learning

Chun Li†‡, Hui Li§, Zhong Li†‡, Minxue Pan†‡∗, and Xuandong Li†
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Software Institute, Nanjing University, China
§Samsung Electronics (China) R&D Centre, China

chunli@smail.nju.edu.cn, hui.li@samsung.com, {lizhong, mxp, lxd}@nju.edu.cn

Abstract—Engineers utilize logs as a primary resource for fault
localization in large-scale software and system testing, a process
that is notoriously time-consuming, costly, and labor-intensive.
Despite considerable progress in automated fault localization
approaches, their applicability remains limited in such settings,
due to the unavailability of fine-grained features in logs essential
for most existing fault localization methods. In response, we in-
troduce FALCON, a novel log-based fault localization framework.
FALCON organizes complex semantic log information into graph-
ical representations and employs contrastive learning to capture
the differences between passed and failed logs, enabling the
identification of crucial fault-related features. It also incorporates
a specifically designed transitive analysis-based adaptive graph
augmentation to minimize the influence of fault-unrelated log in-
formation on contrastive learning. Through extensive evaluations
against 34 spectrum-based and 4 learning-based fault localization
methods, FALCON demonstrates superior performance by out-
performing all the methods in comparison. In addition, FALCON
demonstrated its practical value by successfully identifying 71
out of 90 faults with a file-level Top-1 accuracy rate during a
one-month deployment within a global company’s testing system.

Index Terms—Industrial software debugging, fault localization,
contrastive learning.

I. INTRODUCTION

Locating the root cause of a fault is the critical first step in
the debugging process for software programs. This endeavor
can often be time-consuming, costly, and labor-intensive [1].
The complexity of this task is further exacerbated in an in-
dustrial context, particularly when dealing with system testing
procedures for large-scale software systems. To alleviate the
intricacies of debugging, engineers frequently rely on log
files as a valuable source of information, as evidenced by a
recent survey [2] indicating that logs are the most commonly
utilized resource by industry professionals in the process of
locating faults. However, system testing of large-scale software
often generates logs exceeding tens of thousands of lines. The
complexity of such software and its logs presents significant
challenges to engineers in debugging. Consequently, there is
a tremendous demand in the industry for automated fault
localization tools.

Extensive research has been conducted on Fault Localiza-
tion (FL) methods [3]–[14] to fully automate the process of di-
agnose program entities (files, methods, or statements) related

∗ Corresponding author.

to faults and facilitate the software debugging process. More
specifically, fault localization techniques compute suspicious-
ness scores for different program entities, and then rank the
program entities in descending order based on these scores. Al-
though fault localization has evolved significantly over decades
and achieved considerable success, current methods are pri-
marily evaluated on datasets such as Defects4J [15] and unit
tests, leaving their effectiveness in large-scale software and
system testing yet to be determined. In particular, existing fault
localization tools may encounter specific challenges in this
context. These challenges primarily arise from the limitations
in the availability of information used in localization. Due to
the large scale of industrial software, it becomes impractical
to collect fine-grained information such as line coverage [6],
data/control flow dependencies [8], [16], line-level execution
paths [11]–[13], or mutation-based coverage [9], [17]–[19].
The collection of these data often involves static/dynamic
analysis, instrumentation, and mutation, which significantly
impacts the efficiency of testing. Even if we could, given
that system testing may involve thousands of methods, the
fine-grained features would cause a rapid expansion in the
size of logs, significantly increasing the spatial requirements
of the method. Furthermore, information such as bug reports
may also be missing. All these restrictions would lead to
the ineffectiveness of many fault localization methods in the
industrial context, including those based on slicing [20], [21],
mutation [18], [19], information retrieval [22]–[24], and code
change [1], [2].

Logs, being the most frequently used information by en-
gineers when debugging in the industry [2], are generally
available. Logs typically contain information about the threads,
packages, files, and methods involved during the testing pro-
cess. By analyzing logs, we can only obtain the methods
executed during testing, their corresponding files, and pack-
ages, achieving coarse-grained method-level coverage. This
limitation means that while spectrum-based [3]–[6], [25]–
[27] and some learning-based [9]–[11], [17], [28]–[33] fault
localization approaches (SBFL and LBFL) remain viable, their
effectiveness is notably reduced under these conditions, as
highlighted in Section II. Consequently, in the realm of large-
scale software and system testing, existing methodologies
either become impractical or their efficacy is significantly di-
minished due to these data constraints. There is a pressing need

within the industry for a novel fault localization framework
designed specifically for this scenario.

To address this need, we propose FALCON (FAuLt
LoCalizatiON), a novel log-based fault localization frame-
work specifically designed for industrial applications. The
key insight underlying FALCON is the observation that faults
can alter a software system’s behavior, as elaborated in Sec-
tion II. FALCON organized complex semantic information from
logs into graphical representations and employs contrastive
learning [34] to capture the differences between passed and
failed logs and link these differences to the responsible faults,
achieving effective fault localization. Contrastive learning is
particularly suitable for this purpose, given that it can capture
the differences in features between various samples effectively
and accurately [34]–[37]. Another key insight is the prevalence
of fault-irrelevant data within logs, which can obscure fault
localization efforts. To counter this, FALCON incorporates a
unique transitive analysis-based adaptive graph augmentation
technique, reducing the influence of irrelevant information on
the constrastive learning process and thus, enhancing localiza-
tion accuracy.

Our evaluation of FALCON’s performance in large-scale
software and system testing involved over two thousand logs
from system tests of eleven software projects, each exceeding
one million lines of code, supplied by a global company.
We benchmarked FALCON against 34 spectrum-based and 4
learning-based fault localization methods, demonstrating its
exceptional efficacy by significantly outperforming all com-
pared methods, including a remarkable 58.70% improvement
over the top-performing method, GRACE [10]. Additionally, a
deployment within the testing system of our industrial partner
highlighted FALCON’s practical value, where it successfully
pinpointed 71 out of 90 faults at a file-level Top-1 accuracy
rate over one month.

The main contributions of this paper are as follows:
• We propose a novel log-based fault localization frame-

work, FALCON, which organizes complex semantic log
information into graphical representations and employs
contrastive learning to capture the differences in key
features between passed and failed logs to facilitate fault
localization.

• We develop a transitive analysis-based adaptive graph
augmentation technique to mitigate the effects of sub-
stantial volumes of fault-irrelevant information in logs on
the contrastive learning process, thereby enhancing the
accuracy of fault localization.

• We conduct extensive evaluations of FALCON within
an industrial context, and the results not only prove
FALCON’s superior performance over existing state-of-
the-art approaches but also validate its practical utility
and effectiveness.

II. METHODOLOGY

A. Motivating Example

In industry contexts, logs frequently act as the exclusive
source for fault localization [2]. As discussed in Section I, this

...
3452
3453
3454
...

15278
15279
15280

...
< >
< >
< >

...
< >
< >
< >

Bug triggered(a) Bug triggered No bug triggered

...
3549
3550
3551
...

16333
16334
16335

...
< >
< >
< >

...
< >
< >
< >

(b) No bug triggered

k
k+1
k+2
k+3
k+4
k+5

Log();
ClassA ret = ();
if (ret->isXXX())
 (ret);
else
 (ret->getXXX());

(c) code snippet of
m1

Fig. 1: Motivating example: A simplified real bug and corre-
sponding log.

reliance can significantly reduce the effectiveness of current
fault localization methods. The core issue is the absence of
necessary fine-grained information—such as data/control flow
dependencies, line-level coverage, and additional resources
like bug reports—that existing methods depend on but which
are difficult or too costly to obtain in industrial environments.

To further illustrate the difficulties encountered by existing
fault localization methods, we further present a motivating
example in Figure 1. Figure 1 shows two real logs obtained
from our industrial partner, which have been simplified and
anonymized. More specifically, Figures 1a and 1b respectively
depict partial logs resulting from whether the bug in the faulty
method m2 was triggered or not triggered, where t, p, f and
m denote the thread, package, file, and method associated
with each log entry. Fault-related and fault-unrelated sections
are colored as red and gray, respectively, for presentation.
Figure 1c provides the context of method m1 involved in
line 3453 of the bug-triggered log. Due to the triggering of
the bug in m2, the erroneous boolean value returned by the
isXXX method called by variable ret at line k + 2 leads to
the invocation of m3, ultimately resulting in differences in
the log compared to the log when the bug is not triggered
and m4 is invoked instead. For this case, all SBFL and LBFL
methods that involve fine-grained coverage, fail to rank the
faulty method within the Top-1. This is because, under coarse-
grained coverage, we can only observe that m2 appears in both
the passed and failed logs; however, we cannot observe the
differences in internal method execution paths between passed
and failed test cases. From a spectrum perspective alone, m3

only appears in the failed log, while the faulty method m2

appears in both the failed and passed log. Therefore, all SBFL
formulas assign a higher suspiciousness score to m3. This not
only renders SBFL methods ineffective but also reduces the
effectiveness of LBFL methods that rely on SBFL-calculated
suspiciousness scores or fine-grained coverage data. Therefore,
there is an urgent need for an improved fault localization
method in the industry context.

B. Problem Statement

The main problem tackled in this paper is how to effectively
and efficiently analyze logs to localize faults in industrial
software systems.

A log, as depicted in Figure 1, consists of multiple lines,
with each line containing information such as the running
thread number, package, file, and method. Formally, let L =

(l1, l2, . . . , ln) be a log where l1, l2, . . . , ln denotes the lines
of the log L ordered chronologically. Each line li, in general,
comprises the running thread number, the package, file, and
method executed. That is, li = (t, p, f,m), with t, p, f,m
respectively representing the thread, package, file, and method.

The vast and diverse content of logs significantly compli-
cates the analysis for fault localization, presenting notable
challenges. Firstly, these logs are not only voluminous but
also entangled. Given the large scale of industrial software
systems, the resulting testing logs can easily span over ten
thousand lines, containing a multitude of messages related to
packages, files, and thousands of methods, which complicates
the analysis process. Furthermore, the involvement of multiple
threads in testing introduces concurrent logging of informa-
tion. This concurrency results in the intermixing of messages
and states from different threads within the logs, increasing
the difficulty of extracting relevant and critical information for
fault localization. Secondly, pinpointing bug-related features
presents a significant challenge. Effective fault localization
requires the identification of unexpected or suspicious features
within failed logs that could be indicative of bugs. The reliance
on failed logs alone means we are without references of correct
behavior, complicating our ability to discern which features are
anomalous. Moreover, not every feature that deviates from the
norm is inherently suspicious. Given the logs’ extensive data
volume, isolating these features becomes a formidable task.

In summary, to achieve effective and efficient fault localiza-
tion in the industrial context, we need to address the following
challenges:
• Challenge I: How to extract program semantics from
complex logs that can aid in fault localization.
• Challenge II: How to identify fault-related suspicious
program semantics to perform fault localization.

C. Our Approach

In this section, we introduce our idea to solve the afore-
mentioned challenges.

• Extracting the hierarchical structure and intra-thread
method execution sequence as the program semantics for
fault localization. To effectively analyze the complex logs and
obtain effective information for fault localization, we propose
extracting the hierarchical structure and intra-thread method
execution sequence from the logs as program semantics for
fault localization. The hierarchical structure refers to the
relationships between program entities involved in testing
(package, file, and method). As shown in Figure 1a, the line
3452 of the log contains information about method m1, which
belongs to file f1, and file f1, in turn, belongs to package
p1. The hierarchical structure records all program entities
involved in the testing and their relationships, which helps
reflect the spectrum (coverage) information and trace how
faults propagate among these entities, thereby providing useful
information for fault localization. The intra-thread method
execution sequence is the order of method executions within a
thread. For instance, from the last three lines of Figure 1a, we
can deduce that the sequence of method executions in thread t2

is (m5,m6,m7). The intra-thread method execution sequence
reflects the trace and state changes of the thread, which helps
understand program behavior and determine the context of the
fault. Therefore, by extracting the hierarchical structure and
intra-thread method execution sequence from the logs, we can
focus on information that is useful for localizing faults.
• Identifying fault-related suspicious program semantics

by comparison. To identify suspicious semantics related to
faults for fault localization, we propose comparing the program
semantics of passed and failed logs to identify fault-related
suspicious program semantics. This is inspired by the observa-
tion that the triggering of bugs may lead to changes in informa-
tion within the logs. For instance, in the motivating example,
whether the bug is triggered results in line 3454 in Figure 1a
and line 3551 in Figure 1b logging different methods, files,
and packages. This difference will lead to a change in the
program semantics extracted from the logs. Therefore, by
comparing the differences in the program semantics extracted
from a large number of passed and failed logs, the suspicious
program semantics in the failed logs can be identified. To
realize this idea, we employ contrastive learning to deep learn
the program semantics extracted from the logs. Contrastive
learning is commonly used to measure the differences in
various complex features across different samples to learn
and encode the features into sample representations [34]–[37].
Through contrastive learning, the model can learn how to
discern these differences and reflect them in the representations
of the samples. Transitively, the representations of samples
obtained through contrastive learning exhibit clear separation
(i.e., distinct differences). Therefore, through contrastive learn-
ing, we can learn a representation space capable of effectively
distinguishing between the program semantics of passed and
failed logs.
• Mitigating the impact of fault-unrelated program

semantics by augmentation. Given that passed and failed
logs may also exhibit differences in fault-unrelated program
semantics, directly applying contrastive learning to compare
these differences could potentially reduce the effectiveness of
fault localization. For instance, in the motivating example, the
log ends with the termination of a remote access module.
However, slight differences in system states lead to variations
in the execution path of thread t2 at the end (m5,m6,m7

and m6,m7,m5). Contrasting these differences may impact
our ability to identify truly suspicious program semantics.
Therefore, we’ve enhanced our methodology by integrating
transitive analysis-based adaptive graph augmentation within
the contrastive learning framework. We aim to refine the
learning process by selectively pruning irrelevant connections
between program entities, thus sharpening the focus on fault-
related semantics.

III. DESIGN

In this section, we first provide an overview of FALCON
workflow. Then, we elaborate on the technical details of each
stage in FALCON.

History Test

Data Collection

Expert Labeling

Log Graph

Thread Method
Execution Sequence

Log
name

Package File Method

Faulty
Method

TA-based
Adaptive

Augmentation

Graph Encoder

vectorization

Representation

Graph Encoder

Rank Head

Projection Head

passed logs failed logs

Stage 1: Data Pre-processing Stage 2: Representation Learning Stage 3: Learning to Rank

Fig. 2: The overview of FALCON.

Minimize
Maximize

Drop

Fig. 3: Example of con-
trastive learning process.

Overview. Figure 2 presents the overall stage of FALCON.
As shown, FALCON consists of three main stages: Data Pre-
processing, Representation Learning, and Learning to Rank. In
the Data Pre-processing stage, our industrial partner collects
logs from historical tests and annotates the faulty methods in
failed tests, ultimately forming a dataset that includes both
passed and failed logs. Each log in the dataset is transformed
into a graph to facilitate the modeling of two important pro-
gram semantics: hierarchical structure and intra-thread method
execution sequence. In the Representation Learning stage, we
employ contrastive learning to understand and capture the
differences in program semantics between passed and failed
graphs caused by the faulty entity to identify suspicious
program semantics in the new failed logs. Specifically, given
the failed graph Gf constructed from failed logs, FALCON first
generates an enhanced failed graph G′

f from the failed graph
using adaptive graph augmentation based on transitive analy-
sis. It then conducts node contrastive learning between Gf and
G′

f , aiming to reduce the influence of semantics unrelated to
faults, enhance the emphasis on fault-relevant semantics, and
achieve improved node embeddings. Then, given the passed
graph Gp constructed from passed logs, we perform graph
contrastive learning between the failed graph Gf , the enhanced
failed graph G′

f , and the passed graph Gp to compel the model
to discern the semantic discrepancies between logs indicating
success and failure, and thereby capturing fault-related pro-
gram semantics during the learning process. Figure 3 presents
an example of our contrastive learning process. We maximize
the similarity of node embeddings for the same node between
G′
f and Gf while minimizing the similarity of embeddings for

different nodes in node contrastive learning. We maximizing
the graph embedding similarity between G′

f and Gp, while
minimize the graph embedding similarity between Gf and G′

f

in graph contrastive learning. In the Learning to Rank stage,
we train a rank head f to convert the suspicious program
semantics identified by the graph encoder to suspiciousness
values of program entities to rank entities and locate fault.

A. Data Pre-processing

In the data pre-processing stage, FALCON extracts the
program semantics from the logs and then processes these
program semantics to facilitate the subsequent representation
learning stage. Specifically, the data pre-processing stage con-
sists of two steps: program semantics extraction and vector-
ization.

Program Semantics Extraction. As discussed in Section II-C,
FALCON employs the hierarchical structure and intra-thread
method execution sequence as the program semantics for fault
localization. To achieve this, we extract the relevant informa-
tion from the logs and organize it using a graph structure
to represent the two program semantics. The advantage of
utilizing a graph structure is that the containment relationships
between different program entities and the execution order of
methods can be naturally represented by the same graph. As
such, we first treat all program entities involved in the log,
including packages, files, and methods, as nodes within the
graph, and employ a dedicated node to represent the entire log,
thereby constructing the set of nodes in the graph. Following
this, we construct the edge set to represent the two types of
relationships. We employ the containment relationship to con-
nect package, file, and method nodes that appear on the same
line, and utilize the special log node to connect all package
nodes within the log, thereby forming the hierarchical structure
of entities within the entire log. Then, we connect method
nodes according to the order of their execution within threads
to represent the intra-thread method execution sequences.

More specifically, given a log L, the graph for log L
is denoted by GL = {VL, EL}, where VL and EL denote
node set and edge set, respectively. Let nL denote the spe-
cial node representing the log itself, and T , P , F , and M
respectively denote the sets of threads, packages, files and
methods which are formed by extracting t, p, f,m from each
line l = (t, p, f,m) in L. Then, the node set of GL is
defined as VL = T ∪ P ∪ F ∪ M ∪ {nL}. The attribute
of each node corresponds to its respective name, such as
the method name, file name, package name, or log name.
Based on the node set VL, we further construct the edge
set EL to establish relationships between different nodes, thus
representing the hierarchical structure and intra-thread method
execution sequence. Let u → v denote node u point to
node v. Then, we can represent the hierarchical structure by
constructing p → f and f → m for each line l, and nL → p
for all p ∈ P . Next, let St = (m1,m2, . . . ,mk) denote the
sequence of methods executed by t, we model the intra-thread
method execution sequence by making mi → mi+1 for each
t ∈ T , where k is the length of St and i ∈ [1, k − 1]. Finally,
the edge set EL is constructed by EL = H ∪ I , where H
denotes the edges represent the hierarchical structure and I
denotes the edges represent the intra-thread method execution
sequence.

Vectorization. In the process of representation learning, the
model necessitates input in the form of vectors or matrices
to facilitate efficient computation and training. Therefore, we
need to further vectorize the previously constructed graph.
Specifically, we use the generic Sentence Embedding tool
SentenceBERT [38] to encode the attribute of a node into a
corresponding vector because the packages, files, functions,
and logs are typically named in a way that aligns with
general reading habits. That is, we vectorize graph GL into
a feature matrix X ∈ R|VL|×D and an adjacency matrix
A ∈ {0, 1}|VL|×|VL|, where D denotes the embedding size
and Aij = 1 iff (vi, vj) ∈ EL. Furthermore, we label whether
a node is a fault entity to associate the learned program
semantics with fault entities. Specifically, if L is a passed
log, then the nodes of GL do not have corresponding labels.
If L is a failed log, then there is an additional label matrix
Y ∈ {0, 1}|VL|×1, where yi ∈ Y is the label of vi. The yi = 1
indicates that node vi is a faulty node and yi = 0 indicates it
is a non-faulty node.

B. Representation Learning

In the representation learning stage, FALCON utilizes con-
trastive learning to train a graph encoder which is capable
of identifying fault-related suspicious program semantics. The
insight is that the triggering of bugs may lead to changes in the
information within the logs. Therefore, based on contrastive
learning, the graph encoder is trained by comparing the
program semantics of passed and failed logs. This training
objective enables the encoder to distinguish between the
program semantics of passed and failed logs and learn how to
identify the fault-related suspicious program semantics during
the distinguishing process. Below, we explain more details of
the representation learning stage.

1) Model Architecture: To construct the graph encoder, we
leverage a Graph Neural Network (GNN) in FALCON. The
reason for utilizing GNNs is that the program semantics are
represented by graphs (c.f., Section III-A) and GNNs have
been demonstrated to be effective in processing graph data
in many tasks [39], [40]. In particular, following previous
work [10], FALCON employs the Gate Graph Neural Network
(GGNN) [41] to construct the graph encoder. GGNN is a
variant of GNN that utilizes gated units to preserve long-term
dependencies such as Long Short Term Memory (LSTM) [42]
and thus it could better capture the complex structures and
long-term dependencies in the program semantics we ex-
tracted.

2) Contrastive Learning: To learn to identify fault-related
suspicious program semantics, we employ contrastive learn-
ing to train the GGNN encoder. However, as discussed in
Section II-C, directly training the encoder using contrastive
learning is sub-optimal due to the negative impact of fault-
unrelated program semantics. Thus, to mitigate the negative
impacts of fault-unrelated information, we introduce transi-
tive analysis-based adaptive graph augmentation (AGA) to
help contrastive learning. AGA generates augmented graphs
that are less influenced by fault-unrelated information. Then,

by incorporating the augmented graphs into the contrastive
learning process, we can alleviate the negative impacts of
fault-unrelated information, thus enabling the model to better
identify fault-related suspicious program semantics. Further-
more, to enhance the model’s learning of program semantics
and rank the node for fault localization, we design a two-
step contrastive learning framework. The first step is Node
Contrastive Learning (NCL) which trains the encoder by
comparing and aligning the original graph with the augmented
graph generated by AGA. As such, the encoder is able to focus
more on learning fault-related information because augmented
graphs are less influenced by fault-unrelated information.
Then, the Graph Contrastive Learning (GCL) step derives the
program semantics of the graph from node embeddings learned
by NCL and trains the encoder through contrasting between
passed graph and failed graph to learn identifying suspicious
program semantics related to faults. In the following, we
elaborate on each step in detail.

Transitive analysis based adaptive graph augmentation.
The goal of adaptive graph augmentation (AGA) is to gen-
erate augmented graphs that are less influenced by fault-
unrelated information. To achieve this, we first identify the
fault-unrelated subgraphs and then apply the topological-level
modification (i.e., selectively dropping certain edges) to the
original graphs based on the fault-unrelated subgraphs. By
removing edges in the fault-unrelated subgraphs, the fault-
unrelated information is prevented from influencing other parts
of the original graph. Therefore, the augmented graphs would
be less impacted by the fault-unrelated information.

To identify the fault-unrelated subgraph, we first identify the
fault-related subgraph, as the fault-related information could
be more intuitively obtained in failed graph. Specifically, we
identify the fault-related subgraph by including all nodes in the
graph that are related to the faulty node (including the faulty
node itself) and the edges associated with these nodes. Given
a failed log graph Gf , let Vr be the set of nodes related to
the faulty node. We construct Vr through transitive predeces-
sor and transitive successor analysis. Transitive predecessors
include all nodes that can be reached via a directed path to
the faulty node, essentially forming the predecessor closure
of that node [43]. Transitive successors are similarly defined.
Then, we define the fault-related edge set Er, which includes
all edges in Gf connected to nodes in Vr without distinguishing
between incoming and outgoing edges. Finally, we can obtain
the fault-unrelated subgraph Gfu by Gfu = {Vf\Vr, Ef\Er}.

Based on the identified fault-unrelated subgraph, we conduct
the topological-level modification on the original graph to
produce the augmented graph. Specifically, following previous
work [44], we calculate edge centrality using the degree of
the node and use edge centrality to assess the probability of
dropping edges. Let φc(v) be the degree of the node v. We
calculate the edge centrality of edge (u, v) as wuv = φc(v).
Then, we sample a subset from the edge set of Gfu and
remove them in the original graph with probability puv , where
(u, v) ∈ Efu. The puv is defined based on edge centrality [44]

and computed as:

puv = min

(
wmax − wuv

wmax − wavg
, pτ

)
(1)

where pτ < 1 is a cut-off probability, used to truncate
the probabilities since extremely high removal probabilities
will lead to overly corrupted graph structures, wmax and
wavg is the maximum and average of wuv . The Equation 1
is a normalization step that transforms edge centrality into
probabilities. Finally, by sampling a subset from the edge set
of the fault-unrelated graph with a probability p and removing
its edges from the original graph, we obtain the adaptively
augmented failed graph G′

f .
Node Contrastive Learning. Based on the augmented graphs,
we first conduct node contrastive learning between failed graph
Gf and augmented failed graph G′

f to learn program semantics
at the node level. Since the augmented failed graph G′

f is less
influence by the fault-unrelated information, by comparing and
aligning Gf and G′

f , we can make the encoder more focus
on the fault-related information, thus learning better program
semantics for fault localization. More specifically, we achieve
this by designing a node contrastive loss function based on
the message passing mechanism.

Message passing is a universal mechanism of GNNs, where
the embedding of a node is computed based on the embeddings
of its neighbors. Intuitively, since the edges in the fault-
unrelated subgraph have been removed from G′

f , the fault-
unrelated information cannot be transmitted to other nodes.
At this point, the embeddings of nodes in G′

f do not contain
information from the fault-unrelated subgraph. Therefore, by
aligning the embeddings of identical nodes between Gf and
G′
f , we can compel the model to ignore fault-unrelated infor-

mation when outputting embeddings for nodes in the Gf .
Based on the message passing mechanism, we design a

node contrastive loss function to align Gf and G′
f . In this

function, we increase the similarity of embeddings of identical
nodes in these two graphs while minimizing the similarity of
embeddings of distinct nodes. This training approach yields
better node representations [45]. It can also reduce the impact
of fault-unrelated features during the process of increasing the
similarity of embeddings of the same nodes, i.e., aligning the
embeddings of the same nodes. More specifically, we first
obtain the dimensionality-reduce node embeddings Zf and
Z ′

f for graphs Gf and G′
f through p(g(G)), where g is graph

encoder to obtain node embeddings and p is projection head
to perform dimensionality reduction. Note that we introduce
a projection head p here to reduce the dimensionality of the
embeddings output by the graph encoder g, thereby decreasing
computational complexity and enhancing the performance of
the encoder [35], [46]. Then, we employ the node contrastive
loss function. For a node vi, its corresponding vectors are
zi ∈ Zf and z′

i ∈ Z ′
f . We consider (zi, z

′
i) as a positive pair,

while zi, z′
i, and embeddings of other nodes form negative

pairs. Let θ(·, ·) is cosine similarity. Then the node contrastive

loss function of vi is defined by:

ℓi = − log
eθ(zi,z

′
i)/τ

eθ(zi,z′
i)/τ +

∑
k ̸=i e

θ(zi,zk)/τ +
∑

k ̸=i e
θ(zi,z′

k)/τ
(2)

where τ is a temperature parameter [47]. Taking Figure 3 as
an example, through Equation 2, we enforce each positive pair
to converge while ensuring each negative pair diverges. Since
edges in the fault-unrelated subgraph are removed, vi does
not contain part of the information from the fault-unrelated
subgraph. Therefore, in the process of aligning zi closer to
z′
i, the model will learn to ignore part of fault-unrelated

features and enhance the influence of fault-related features on
zi. Overall, through adaptive graph augmentation, message
passing, and Equation 2, we can efficiently learn fault-related
features from a local perspective, while minimizing the im-
pact of fault-unrelated features, and finally obtain improved
node representations. Finally, our whole node contrastive loss
function is as shown in Equation 3.

LNodeContrastive =
1

|Vf |

|Vf |∑
i=1

ℓi (3)

Graph Contrastive Learning. After completing node con-
trastive learning, we conduct graph contrastive learning to
contrast the difference in global program semantics between
passed graphs and failed graphs, thereby training the model
to identify suspicious program semantics. Through graph
contrastive learning, the model is able to encode the local
suspicious program semantics into node embeddings to rank
nodes. Specifically, inspired by FaceNet [48], we use the G′

f

as the anchor, aiming to increase the similarity between the
Gf and it, while decreasing the similarity between the Gp and
it. The insights behind this design can be summarized in two
folds. First, choosing G′

f as the anchor is because, by removing
edges in the fault-unrelated subgraph, its representation more
prominently highlights the features of the fault-related parts.
Second, we optimize the model by reducing the similarity
between Gp and G′

f and increasing the similarity between Gf

and G′
f . This enables us to compel the model to focus more

on the differences in fault-related features between Gp and G′
f

and minimize its focus on fault-unrelated information when
encountering real failed logs.

More specifically, We first employ a widely used aver-
age readout function to obtain the graph embedding s =
1
N

∑N
i=1 Zi from the dimensionality-reduced node embed-

dings, where N is the number of nodes. Let sp, sf , s
′
f re-

spectively represent the graph embedding of passed graph Gp,
failed graph Gf , and augmented failed graph G′

f . We perform
the graph contrastive loss function to achieve our optimized
objective as Equation 4.

LGraphContrastive =
∑[

||sf − s′f ||22 − ||sp − s′f ||22 + α
]

(4)

where α is a margin that is enforced between positive and
negative pairs [48].

TABLE I: Statistics about the dataset.

Attribute Value Attribute Value

Total #logs 2524 Average #Files 352.48
Average #Threads 90.05 Average #Methods 1060.90

C. Learning to Rank

After representation learning, FALCON needs to convert
the embeddings of nodes into suspiciousness values for the
corresponding program entities to rank these entities and
perform fault localization in this stage. Specifically, we will
train a rank head f from scratch and fine-tune the graph
encoder g using the failed logs to achieve our goal. Following
previous work [10], we also use the listwise loss function to
optimize the model as it is suitable for ranking nodes in a
graph. That is, we view the final ranking model F in FALCON
as F(G) = f(g(G)). Specifically, the rank head f will linearly
transformed the node embeddings into Y ′ ∈ R|Vf |×1. Then,
we utilize the softmax function to normalize the suspiciousness
scores of each node as p(vi) = exp {y′i}/

∑n
j=1 exp {y′j},

where p(vi) denotes the probability of node vi being faulty,
n is the number of target nodes. If conducting method-level
localization, then the target nodes are methods set M ; if
conducting file-level localization, then the target nodes are
files set F . Finally, the listwise loss function is denoted by
Llist = −

∑n
i=1 yi log(p(vi)), where yi denotes the ground

truth label for node vi. FALCON will train rank head f and
fine-tune encoder g using Llist and rank the target node based
on p(vi).

IV. EXPERIMENT DESIGN

We evaluate FALCON on the following research questions:
• RQ1: How does FALCON’s effectiveness compare to that of

state-of-the-art fault localization techniques?
• RQ2: How does FALCON perform in the cross-project

prediction scenario?
• RQ3: How do different components within FALCON affect

its overall effectiveness?
• RQ4: How does the training efficiency of FALCON compare

to that of LBFL techniques?

A. Industrial Subject Systems

To evaluate FALCON within the backdrop of large-scale
software and system testing, we collaborated with our in-
dustrial partner which operates multiple digital product lines
worldwide. They provided us with log files generated during
system testing of eleven software that cover diverse product
lines and platforms. Each software exceeds one million lines of
code, averaging around 170 packages, 2000 files, and 50,000
methods. Software Engineers from our industrial partner ini-
tially collected logs generated from failed tests, followed by
logs from retesting after these bugs were fixed. Each failed
log contains only one fault. Table I reports key statistics about
the dataset. We have a total of 2524 logs, with an average
of 90.05 threads, 114.07 packages, 352.48 files, and 1060.90
methods involved in each log.

B. Compared Approaches

We compare FALCON against 38 state-of-the-art fault lo-
calization approaches, including 34 spectrum-based fault lo-
calization approaches and 4 learning-based fault localization
approaches. Note that there are also many other types of
fault localization approaches like mutation-based [18], [19],
slicing-based [20], [21], IR-based fault localization [22]–[24].
However, as discussed in Section II, these approaches are not
applicable for comparison because the information they require
is unavailable in the logs. Thus, we omit them in our ex-
periments. For spectrum-based fault localization approaches,
we follow prior work [9], [17] to choose 34 represen-
tative SBFL formulae. For detailed information on these
SBFL formulae, please refer to Table 7 in [17]. Regarding
learning-based fault localization approaches, we consider 4
recent SOTA approaches, which are:
•MULTRIC [30] combines different SBFL formulae using
learning-to-rank for fault localization.
•FLUCCS [31] combines different SBFL formulae and code
features (e.g., code churn) to rank faulty entities.
•DeepFL [9] employs a deep learning-based technique to
locate faults by learning existing/latent features from various
aspects of test cases and programs
•GRACE [10] represents the method’s AST and test cases
using a graph structure and employs graph neural networks to
learn and rank fault entities.

C. Evaluation Setup

Evaluation Metric. Following previous work [9]–[11], [17],
[31], we adopt Recall at Top-N (N=1, 3, 5) and MFR (Mean
First Rank) as our evaluation metrics. Note that MFR and
MAR (Mean Average Rank) are numerically equal in the
context of single-fault localization. Thus, we replace MAR
with MRR (Mean Reciprocal Rank), a more suitable metric
widely adopted in information retrieval systems [49], [50],
for assessment. Let r denote the rank of the faulty entity in
the ranked list, N denote the number of failed logs, and I(·)
denote indicator function. We formally define Recall at Top-
N as (

∑N
i=1 I(ri ≤ N))/N , define MFR as (

∑N
i=1 ri)/N ,

and define MRR as (
∑N

i=1(ri)
−1)/N . Higher Top-N and

MRR, along with lower MFR, indicate better localization
performance. Following previous work [9], [10], [17], we
use the worst ranking for the tied elements that have the
same suspiciousness scores. Due to the large volume of data
and the cost of model training, we employed ten-fold cross-
validation in subsequent experiments instead of the leave-one-
out validation method used in previous work [9], [10].
Localization Level. We perform fault localization at the file
and method levels because we are unable to collect line
coverage data when only the logs are available. For the
compared approaches, because their original implementations
do not account for file-level localization, we follow the setup
used in FLUCCS [31] to select the highest suspiciousness
value among all methods in a file to represent the overall
suspiciousness of that file.

Within-project and Cross-Project Setting. RQ1 studies
FALCON’s performance in a within-project setting, a scenario
where a single project’s data populates both training and
testing sets. This setting mirrors prevalent industry practices,
exemplified by our industrial partner, where projects are con-
tinuously developed over years or decades, accumulating a vast
array of logs and enabling the training of tailored project-
specific models. In the within-project setting, the dataset is
carefully curated to ensure that for any failed log in the test
set, neither it nor its corresponding successful log is in the
training set.

RQ2 explores FALCON’s effectiveness in a cross-project
setting, seeking to evaluate its generality across projects.
Consistent with existing literature [11], this setting adopts
the leave-one-out validation method: testing each failed log
in a project while training a model on the logs from all the
remaining projects.
Implementation. We build FALCON based on PyTorch Ge-
ometric [51], one of the most widely used deep learning
frameworks on graphs built upon PyTorch. For the parameters
in FALCON, we determine them through grid search to ensure
the best performance of FALCON. The result values of the
parameters in FALCON are shown in Table II. pτ is cuf-off
probability in augmentation. lrcontrastive denotes the learning
rate of the optimizer on contrastive learning, lrrank denotes
the learning rate of the optimizer on learning to rank, and
weight decay is L2-Regularization. hg , hp represent the hidden
vector of the graph encoder and projection head. τ is a tem-
perature parameter in LNodeContrastive and α is the margin
in LGraphContrastive. epochn, epochg, epochr represent the
epoch of node contrastive learning, graph contrastive learning,
and learning to rank, respectively.

Regarding the compared approaches, we directly adopt
their open-source implementations and employ the default
configurations of the original papers to ensure the accuracy of
experimental repetition. We provide method-level coverage for
the studied comparison approaches by collecting all executed
methods recorded in the logs because the method-level is the
finest granularity obtainable from logs. Furthermore, because
these approaches require input from a test suite containing at
least one failed test to perform fault localization, we enlist
the software engineers from our industrial partner to organize
the existing dataset into test suites, ensuring that each suite
contained at least one failing test.

For the studied LBFL techniques, there are constraints in
accessing all the necessary features. In the case of FLUCCS,
we cannot obtain information about code changes because the
software we used have more than three years of development
history. Querying the age and churn of all faulty methods in the
code change system would incur significant manual collection
costs. In the case of DeepFL, we cannot obtain mutation-based
features or certain information used for calculating textual
similarity (types of exceptions, messages, and stack traces).
With an average of thousands of functions involved in each
test, performing mutations would significantly increase the
cost of testing. Information such as exception types and stack

TABLE II: Hyper-parameters of FALCON.

Hyper-parameter Value Hyper-parameter Value Hyper-parameter Value

pτ 0.3 optimizer Adam lrcontrastive 1e-3
lrrank 1e-5 weight decay 1e-4 embedd size 384
hg size 768 hp size 128 α 0.2
τ 0.4 epochn 30 epochg 10
epochr 10 batch size 12 graph layer 6

TABLE III: Comparison with state-of-the-art at method level.

Techniques Top-1↑ Top-3↑ Top-5↑ MFR↓ MRR↑

RussellRao 22.13 23.20 23.20 289.37 0.23
Hamann 18.89 20.00 20.00 301.39 0.20

SϕrensenDice 16.57 17.71 17.71 309.97 0.18
MULTRIC 30.86 32.10 37.04 134.47 0.33
FLUCCS 27.16 44.44 45.68 63.74 0.36
DeepFL 2.47 8.64 18.52 302.33 0.09
GRACE 40.00 50.43 58.26 47.50 0.48

FALCON 63.48 82.61 85.22 8.23 0.74

traces is inherently missing. In the case of GRACE, we can
only connect the Test Node with the root node of the AST
of the covered method since we cannot obtain line coverage
information due to the logs not recording line numbers.
The limited information in the logs further demonstrates the
importance of FALCON, which can effectively locate faults in
industrial scenarios.

All experiments are conducted on a workstation with AMD
Ryzen 9 3900XT, 32GB memory, and two RTX 4090 GPUs,
running Ubuntu 20.04.

V. RESULT ANALYSIS

A. RQ1: Effectiveness of FALCON

In this RQ, the primary objective is to evaluate the effective-
ness of FALCON in locating faults. We conduct a comparative
analysis of FALCON against 38 baseline approaches outlined
in Section IV-B, examining performance at both file and
method levels. Results are detailed in Table III and Table IV.
Due to spatial constraints, only the three SBFL formulae
with top performance–RussellRao [52], Hamann [53], and
SϕrensenDice [54], [55]–are highlighted in the tables, while
comprehensive results are accessible on our project web-
site [56].

Analysis of Tables III and IV yields notable insights: First,
FALCON consistently surpasses competing models across all
five metrics, at both file and method levels. Notably, at the
method level, FALCON achieves Top-1 localization accuracy
of 63.48%, representing significant improvements of 186.85%,
105.70%, 133.72% and 58.70% over the RussellRao, MUL-
TRIC, FLUCCS, and GRACE baselines, respectively. Addi-
tionally, MFR and MRR metrics exhibit substantial enhance-
ments, with FALCON showing an 82.67% improvement in
MFR and a 54.16% improvement in MRR compared to the
best-performing baseline, GRACE. Similar trends are observed
at the file level, underscoring FALCON’s effectiveness in fault
detection within industrial software contexts.

Second, the comparison between FALCON and
GRACE—both of which leverage graph structures to capture

TABLE IV: Comparison with state-of-the-art at file level.

Techniques Top-1↑ Top-3↑ Top-5↑ MFR↓ MRR↑

RussellRao 25.87 32.53 37.87 72.64 0.32
Hamann 24.44 34.89 41.11 62.15 0.33

SϕrensenDice 21.52 30.67 36.76 70.06 0.30
MULTRIC 45.45 51.52 57.58 53.36 0.52
FLUCCS 43.21 69.14 70.37 23.00 0.56
DeepFL 23.46 35.80 40.74 37.63 0.32
GRACE 55.65 58.26 63.48 13.30 0.60

FALCON 75.65 86.09 93.91 2.17 0.83

program semantics and apply GNNs for learning—reveals
that FALCON markedly outperforms GRACE at both analysis
levels. This indicates that FALCON’s consideration of program
semantics is more adept for fault localization in industrial
applications. Unlike GRACE, which solely employs static
Abstract Syntax Trees, FALCON integrates both static and
dynamic information, including a hierarchical structure of
static inter-entity relationships and intra-thread dynamic
execution sequences of methods. The improvement also
suggests that our contrastive learning is more effective
in identifying the suspicious program semantics in failed
logs than supervised learning employed by GRACE. This
comprehensive semantic approach and contrastive learning
enable FALCON to more accurately mirror program behavior,
enhancing fault localization efficacy.

Finally, DeepFL’s method-level performance is observed to
be relatively low, which we attribute to its struggle with the ex-
treme class imbalance prevalent in industrial software system
fault localization—where failed tests may involve thousands of
methods, but only a few are faulty. This imbalance can bias
models relying on binary cross-entropy loss functions [57],
[58] towards non-fault methods. In contrast, FALCON would
not suffer from such an issue since it employs the listwise loss
function that always ranks the faulty node ahead of non-faulty
nodes.

To further confirm the observations above, we have followed
previous works [9], [10] to perform the Wilcoxon signed-rank
test [59] with Bonferroni corrections [60] to investigate the
statistical significance between FALCON and other baselines.
The results show that FALCON is significantly better than all
studied techniques at the significance level of 0.05, with p-
values from 1.87e-138 to 1.45e-63 at the file level and from
1.81e-141 to 4.56e-68 at the method level.

B. RQ2: Cross-project Effectiveness of FALCON

In RQ2, we further evaluate the method-level effectiveness
of FALCON in a cross-project scenario. Table V presents the
comparison results between FALCON and GRACE in the cross-
project scenario. Note that, due to the space limit, we only
present the results of GRACE which achieves the best perfor-
mance among all the compared approaches. From Table III and
Table V, we find that the performance of FALCON experiences
a certain degree of decline in the cross-project scenario. For
example, there is a 22.32% decrease in the Top-1 accuracy of
FALCON. This is reasonable because the cross-project scenario
is more challenging than the within-project scenario. In the

TABLE V: Cross-project effectiveness at method level.

Techniques Top-1↑ Top-3↑ Top-5↑ MFR↓ MRR↑

GRACE 30.53 34.92 39.46 124.83 0.39
FALCON 49.31 62.78 63.53 89.80 0.61

TABLE VI: Method level fault localization ablation study.

Variant Top-1↑ Top-3↑ Top-5↑ MFR↓ MRR↑

w/o NCL (GCL + AGA) 55.65 71.30 75.65 41.36 0.65
w/o GCL (NCL + AGA) 59.13 70.43 77.39 20.36 0.66
w/o AGA (NCL + GCL) 53.04 65.22 69.57 38.75 0.6
FALCON (NCL + GCL + AGA) 63.48 82.61 85.22 8.23 0.74

within-project scenario, various methods are likely to exhibit
similarities because they originate from the same projects,
thus facilitating the learning of fault-related features. However,
in the cross-project scenario, methods may vary significantly
due to differences between projects. This diversity presents a
challenge in learning fault-related features. On the other hand,
as shown in Table V, despite the performance degradation of
FALCON in the cross-project scenario, it still achieves superior
performance compared to GRACE (the best compared ap-
proach). Specifically, the improvements of FALCON compared
with GRACE achieve 61.51%, 79.78%, 60.99%, 28.06%, and
56.41%, in terms of Top-1, Top-3, Top-5, MFR and MRR,
respectively. Furthermore, we can observe from Table III and
Table V that the performance drop of FALCON in the cross-
project scenario is also smaller than that of GRACE. For
example, in terms of top-1 accuracy, FALCON decreased by
22.32%, which is less than the 23.67% decrease experienced
by GRACE. These results demonstrate the superiority of
FALCON in the cross-project scenario. Compared to existing
LBFL methods, which learn fault localization solely from the
features of failed tests, FALCON adopts contrastive learning to
train the model by comparing passed logs and failed logs. This
combines the features of both types of logs, thus resulting in
higher performance in the cross-project scenario.

C. RQ3: Ablation Study

In this RQ, we conduct a series of ablation studies to
further analyze the impact of each component in FALCON.
In particular, we consider three variants of FALCON: without
transitive analysis-based adaptive graph augmentation (AGA),
without node contrastive learning (NCL), and without graph
contrastive learning (GCL). Table VI summarizes the study
results. We can see from Table VI that, all the variants of
FALCON lead to a decrease in Top-N, MFR, and MRR, indi-
cating that both our AGA and contrastive learning contribute
to enhancing the fault localization capability of FALCON.
Beyond the performance decline, we can also observe from
Table VI that the model performs worse when only contrastive
learning (without AGA) is conducted, as compared to the
FALCON. Specifically, in method-level localization, the Top-1
accuracy with w/o AGA decreased by 16.44% compared to
FALCON. This suggests that pure contrastive learning may
be influenced by fault-unrelated program semantics in logs.

TABLE VII: Training time cost of studied LBFL techniques.

Techniques MULTRIC FLUCCS DeepFL GRACE FALCON

Training Time 2m12s 4h23m10s 12m6s 6m19s 19m14s

Our AGA effectively addresses this issue, thus improving the
effectiveness of contrastive learning and fault localization.
From Table VI, we further find that NCL plays a more
important role in FALCON than GCL, as removing NCL results
in a larger performance loss. The reason is that GCL relies
on the node embeddings learned from NCL. When the NCL
is removed, the node embeddings would be less effective
due to the impact of fault-unrelated information, consequently
diminishing the effectiveness of GCL.

D. RQ4: Efficiency of FALCON

This RQ empirically analyzes the efficiency of FALCON.
Table VII presents the time cost of training a model using
FALCON and the studied LBFL approaches. As shown in this
table, compared to the studied LBFL approaches, FALCON
requires more time to train the model because FALCON re-
quires transitive analysis-based adaptive graph augmentation,
node contrastive learning, and graph contrastive learning.
Nevertheless, it is important to highlight that FALCON achieves
significantly better performance in locating faults than the
studied LBFL approaches, as demonstrated in Section V-A
Therefore, we believe such a time cost of FALCON is worth-
while for achieving better models. Furthermore, considering
that the training process is offline, the training time of FALCON
(i.e., only takes 20 minutes) is also acceptable in practice.

E. Threats to Validity.

The main threat to internal validity lies in the technical
implementation of FALCON, the compared approaches, and ex-
perimental scripts. To mitigate this threat, we developed FAL-
CON based on widely used libraries and employed the original
implementations of the compared approaches. We carefully
check the source code of FALCON and experimental scripts.
The main threat to external validity lies in the benchmark used
in our study. To reduce this threat, we perform experiments
on an industrial dataset provided by our industrial partner,
which contains 2524 logs from 11 large-scale software each
exceeding one million lines of code. Furthermore, we compare
FALCON with 34 SBFL formulae and 4 LBFL techniques in
our experiments. The main threat to construct validity lies in
the parameters in FALCON and metrics used in experiments. To
mitigate this threat, we present the detailed parameter settings
in Section IV-C. To reduce the threat from metrics employed,
we employed various metrics that are widely used in fault
localization and information retrieval research.

VI. PRACTICAL EVALUATION

We have successfully deployed FALCON onto the develop-
ment pipeline of product T from our industrial partner. A series
of large-scale software related to product T is continually
being developed and tested. The logs generated during system

TABLE VIII: Practical evaluation results of FALCON over a
one-month deployment period.

Method Top-1 Accuracy Top-1 Failed Number of Tests

FALCON 71 19 90

testing often exceed ten thousand lines and involve thou-
sands of functions, presenting significant challenges to manual
debugging. FALCON is capable of automatically modeling
key features in logs and localizing faults without manual
intervention, admirably meeting their demands. Indeed, they
largely appreciated the performance of FALCON on their
systems. Here, we report practical evaluation results based on
the first month of usage since deploying FALCON. Specifically,
developers in the company primarily use file-level localization.
When a test fails, they assign the failed test to the engineer
responsible for the file with the highest suspiciousness value.
During a month of deployment, the tests conducted were to
determine whether a series of software related to product T
would perform as expected on new hardware. Consequently,
although the software had appeared in FALCON’s training data,
the distribution of program semantics in the logs varied due to
the differences in hardware. Table VIII shows the effectiveness
of FALCON. From the table, we can see that FALCON achieved
promising results in its actual deployment. Specifically, among
a total of 90 system tests, FALCON reached a Top-1 accuracy
of 78.88%. Although the software involved in the tests was
present in the training set, the tests were for compatibility
of this software on new hardware, resulting in different log
distributions. Therefore, this result further demonstrates the
generality and practicability of FALCON. Through an infor-
mal interview, developers indeed confirmed the usefulness of
FALCON in practice.

VII. RELATED WORKS

Spectrum-based Fault Localization. Spectrum-based fault
localization (SBFL) [3]–[6], [25]–[27] is a crucial technique
for the precise localization of faults within software systems.
By leveraging coverage information generated from passed/-
failed tests, SBFL assigns suspiciousness scores (probability of
being faulty) to distinct program entities (such as a statement
or a method). At the core of SBFL lies the assumption that
the likelihood of program entities being faulty increases if they
are covered by more failed tests and less passed tests. More
specifically, given a buggy software, a test suite (containing at
least one failed test case), and coverage information, SBFL
extracts the following tuple information for each program
entity e: (ep, ef , np, nf): ep and ef represent the number of
passed/failed tests covering the program entity, respectively.
Similarly, np and nf represent the number of passed/failed
tests that do not cover the program entity, respectively. Em-
ploying the tuple, the SBFL is capable of calculating the
suspiciousness score of each program entity using a variety
of ranking formulae.
Learning-based Fault Localization. In addition to the tra-
ditional SBFL approaches, deep learning technologies have
found extensive application in fault localization [9]–[11],

[13], [14], [17], [28]–[33]. Learning-based fault localization
(LBFL) can be broadly divided into two categories: one is
learning-to-represent [10], [11], [14], [28], [29], and the other
is learning-to-combine [9], [17], [30]–[32]. The learning-to-
represent techniques focus on how to better represent finer-
grained coverage and employ learning algorithms to process
this information for the calculation of suspiciousness scores.
The learning-to-combine techniques are concerned with how
to synergize information that encapsulates various feature
dimensions using learning processes. FALCON falls under the
learning-to-represent category that utilizes contrastive learning
to represent the suspicious program semantics for fault local-
ization.
GNNs and Contrastive Learning. GNNs and contrastive
learning have demonstrated their potential and utility across
multiple domains. GNNs [61]–[64] update each node’s repre-
sentation by aggregating information from neighboring nodes,
enabling the model to capture complex graph structural fea-
tures. Contrastive learning acquires powerful feature represen-
tations by learning the differences between data points and
popularity in the fields of computer vision [35], [36], [65] and
natural language processing [66], [67]. Recently, some works
utilize contrastive learning or GNNs for different software
engineering tasks such as clone detection [39], vulnerabili-
ties detection [40], and type inference [68]. FALCON further
combines and extends their application into fault localization.

VIII. CONCLUSION

In this paper, we propose a novel fault localization frame-
work, named FALCON, designed to effectively locate faults
within the context of industrial software systems. FALCON
organizes complex semantic log information into graphical
representations and employs contrastive learning to capture
the differences between passed and failed logs, enabling
the identification of crucial fault-related features. It also in-
corporates a specifically designed transitive analysis-based
adaptive graph augmentation to minimize the influence of
fault-unrelated log information on contrastive learning. The
experiment results and practical evaluation demonstrate the
effectiveness of FALCON in fault localization within industrial
software systems. We believe FALCON makes a significant
contribution to advancing the practice of fault localization.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-
back. This research was supported by the National Natural
Science Foundation of China under Grant Nos. 62372227 and
62032010. This research was also supported by the Fund
of State Key Laboratory for Novel Software Technology in
Nanjing University under Grant No.ZZKT2024B09.

REFERENCES

[1] A. R. Chen, T. P. Chen, and J. Chen, “How useful is code change
information for fault localization in continuous integration?” in ASE.
ACM, 2022, pp. 52:1–52:12.

[2] M. Wen, J. Chen, Y. Tian, R. Wu, D. Hao, S. Han, and S. Cheung,
“Historical spectrum based fault localization,” IEEE Trans. Software
Eng., vol. 47, no. 11, pp. 2348–2368, 2021.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “An evaluation of
similarity coefficients for software fault localization,” in PRDC. IEEE
Computer Society, 2006, pp. 39–46.

[4] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. A. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in DSN.
IEEE Computer Society, 2002, pp. 595–604.

[5] S. Reis, R. Abreu, and M. d’Amorim, “Demystifying the combination
of dynamic slicing and spectrum-based fault localization,” in IJCAI.
ijcai.org, 2019, pp. 4760–4766.

[6] X. Xie, T. Y. Chen, F. Kuo, and B. Xu, “A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, 2013.
[Online]. Available: https://doi.org/10.1145/2522920.2522924

[7] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu, “Revisit
of automatic debugging via human focus-tracking analysis,” in ICSE.
ACM, 2016, pp. 808–819.

[8] M. Zeng, Y. Wu, Z. Ye, Y. Xiong, X. Zhang, and L. Zhang,
“Fault localization via efficient probabilistic modeling of program
semantics,” in 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022. ACM, 2022, pp. 958–969. [Online]. Available:
https://doi.org/10.1145/3510003.3510073

[9] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: integrating multiple
fault diagnosis dimensions for deep fault localization,” in Proceedings
of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019,
D. Zhang and A. Møller, Eds. ACM, 2019, pp. 169–180. [Online].
Available: https://doi.org/10.1145/3293882.3330574

[10] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” in ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021, D. Spinellis,
G. Gousios, M. Chechik, and M. D. Penta, Eds. ACM, 2021, pp.
664–676. [Online]. Available: https://doi.org/10.1145/3468264.3468580

[11] Y. Li, S. Wang, and T. N. Nguyen, “Fault localization with code coverage
representation learning,” in ICSE. IEEE, 2021, pp. 661–673.

[12] ——, “Fault localization to detect co-change fixing locations,” in
Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022,
A. Roychoudhury, C. Cadar, and M. Kim, Eds. ACM, 2022, pp.
659–671. [Online]. Available: https://doi.org/10.1145/3540250.3549137

[13] W. Chen, W. Chen, J. Liu, K. Zhao, and M. Zhang, “Supconfl: Fault lo-
calization with supervised contrastive learning,” in Internetware. ACM,
2023, pp. 44–54.

[14] T. B. Le, D. Lo, C. L. Goues, and L. Grunske, “A learning-to-rank based
fault localization approach using likely invariants,” in ISSTA. ACM,
2016, pp. 177–188.

[15] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in ISSTA.
ACM, 2014, pp. 437–440.

[16] Z. Zhang, Y. Lei, X. Mao, M. Yan, X. Xia, and D. Lo, “Context-aware
neural fault localization,” IEEE Trans. Software Eng., vol. 49, no. 7, pp.
3939–3954, 2023.

[17] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp.
92:1–92:30, 2017. [Online]. Available: https://doi.org/10.1145/3133916

[18] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in ICST. IEEE Computer
Society, 2014, pp. 153–162.

[19] M. Papadakis and Y. L. Traon, “Metallaxis-fl: mutation-based fault
localization,” Softw. Test. Verification Reliab., vol. 25, no. 5-7, pp. 605–
628, 2015.

[20] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault local-
ization using execution slices and dataflow tests,” in ISSRE. IEEE
Computer Society, 1995, pp. 143–151.

[21] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in ASE. IEEE Computer Society, 2003, pp. 30–39.

[22] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in ASE. IEEE, 2013,
pp. 345–355.

[23] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of ir-based
fault localization techniques,” in ISSTA. ACM, 2015, pp. 1–11.

https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/3510003.3510073
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3540250.3549137
https://doi.org/10.1145/3133916

[24] V. Murali, L. Gross, R. Qian, and S. Chandra, “Industry-scale ir-based
bug localization: A perspective from facebook,” in ICSE (SEIP). IEEE,
2021, pp. 188–197.

[25] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Trans. Reliab., vol. 63, no. 1,
pp. 290–308, 2014.

[26] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing pro-
gram edits based on spectrum information,” in ICSM. IEEE Computer
Society, 2011, pp. 23–32.

[27] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization of test
information to assist fault localization,” in ICSE. ACM, 2002, pp.
467–477.

[28] W. Zheng, D. Hu, and J. Wang, “Fault localization analysis based on
deep neural network,” Mathematical Problems in Engineering, vol. 2016,
pp. 1–11, 01 2016.

[29] Z. Zhang, Y. Lei, X. Mao, and P. Li, “CNN-FL: an effective approach
for localizing faults using convolutional neural networks,” in SANER.
IEEE, 2019, pp. 445–455.

[30] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September
29 - October 3, 2014. IEEE Computer Society, 2014, pp. 191–200.
[Online]. Available: https://doi.org/10.1109/ICSME.2014.41

[31] J. Sohn and S. Yoo, “FLUCCS: using code and change metrics
to improve fault localization,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Santa Barbara, CA, USA, July 10 - 14, 2017, T. Bultan and
K. Sen, Eds. ACM, 2017, pp. 273–283. [Online]. Available:
https://doi.org/10.1145/3092703.3092717

[32] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Trans. Software Eng., vol. 47, no. 2, pp. 332–347, 2021. [Online].
Available: https://doi.org/10.1109/TSE.2019.2892102

[33] X. Meng, X. Wang, H. Zhang, H. Sun, and X. Liu, “Improving
fault localization and program repair with deep semantic features
and transferred knowledge,” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 1169–1180. [Online]. Available:
https://doi.org/10.1145/3510003.3510147

[34] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon,
“A survey on contrastive self-supervised learning,” CoRR, vol.
abs/2011.00362, 2020. [Online]. Available: https://arxiv.org/abs/2011.
00362

[35] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” in
Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings
of Machine Learning Research, vol. 119. PMLR, 2020, pp. 1597–1607.
[Online]. Available: http://proceedings.mlr.press/v119/chen20j.html

[36] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum
contrast for unsupervised visual representation learning,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer
Vision Foundation / IEEE, 2020, pp. 9726–9735. [Online]. Available:
https://doi.org/10.1109/CVPR42600.2020.00975

[37] Y. Chen, Z. Ding, and D. A. Wagner, “Continuous learning for android
malware detection,” in USENIX Security Symposium. USENIX Asso-
ciation, 2023, pp. 1127–1144.

[38] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019,
K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Association for
Computational Linguistics, 2019, pp. 3980–3990. [Online]. Available:
https://doi.org/10.18653/v1/D19-1410

[39] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Purandare,
“Modeling functional similarity in source code with graph-based siamese
networks,” IEEE Trans. Software Eng., vol. 48, no. 10, pp. 3771–3789,
2022. [Online]. Available: https://doi.org/10.1109/TSE.2021.3105556

[40] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong:
Statically detecting software vulnerabilities using deep graph neural
network,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 3, pp.
38:1–38:33, 2021. [Online]. Available: https://doi.org/10.1145/3436877

[41] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.
[Online]. Available: http://arxiv.org/abs/1511.05493

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[43] M. E. J. Newman, Networks: An Introduction. Oxford University
Press, 2010. [Online]. Available: https://doi.org/10.1093/ACPROF:
OSO/9780199206650.001.0001

[44] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph
contrastive learning with adaptive augmentation,” in WWW ’21: The
Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23,
2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia,
Eds. ACM / IW3C2, 2021, pp. 2069–2080. [Online]. Available:
https://doi.org/10.1145/3442381.3449802

[45] T. Wang and P. Isola, “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in Proceedings
of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine
Learning Research, vol. 119. PMLR, 2020, pp. 9929–9939. [Online].
Available: http://proceedings.mlr.press/v119/wang20k.html

[46] K. Gupta, T. Ajanthan, A. van den Hengel, and S. Gould,
“Understanding and improving the role of projection head in self-
supervised learning,” CoRR, vol. abs/2212.11491, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2212.11491

[47] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE
Computer Society, 2018, pp. 3733–3742.

[48] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015. IEEE Computer Society, 2015, pp. 815–823.
[Online]. Available: https://doi.org/10.1109/CVPR.2015.7298682

[49] A. R. Chen, T. P. Chen, and J. Chen, “How useful is code
change information for fault localization in continuous integration?”
in 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2022, Rochester, MI, USA, October 10-14,
2022. ACM, 2022, pp. 52:1–52:12. [Online]. Available: https:
//doi.org/10.1145/3551349.3556931

[50] J. Wang and J. Zhu, “Portfolio theory of information retrieval,” in
Proceedings of the 32nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR
2009, Boston, MA, USA, July 19-23, 2009, J. Allan, J. A. Aslam,
M. Sanderson, C. Zhai, and J. Zobel, Eds. ACM, 2009, pp. 115–122.
[Online]. Available: https://doi.org/10.1145/1571941.1571963

[51] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[52] P. F. Russell, T. R. Rao et al., “On habitat and association of species
of anopheline larvae in south-eastern madras.” Journal of the Malaria
Institute of India, vol. 3, no. 1, 1940.

[53] U. Hamann, “Merkmalsbestand und verwandtschaftsbeziehungen der
farinosae: ein beitrag zum system der monokotyledonen,” Willdenowia,
pp. 639–768, 1961.

[54] T. Sorenson, “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content, and its application
to analysis of vegetation on danish commons,” Kong Dan Vidensk Selsk
Biol Skr, vol. 5, pp. 1–5, 1948.

[55] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[56] “Falcon website,” 2024. [Online]. Available: https://github.com/
pppppkun/falcon

[57] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with
class imbalance,” J. Big Data, vol. 6, p. 27, 2019.

[58] K. Cao, C. Wei, A. Gaidon, N. Aréchiga, and T. Ma, “Learning imbal-
anced datasets with label-distribution-aware margin loss,” in NeurIPS,
2019, pp. 1565–1576.

[59] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics: Methodology and distribution. Springer, 1992,
pp. 196–202.

https://doi.org/10.1109/ICSME.2014.41
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1145/3510003.3510147
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2011.00362
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1109/TSE.2021.3105556
https://doi.org/10.1145/3436877
http://arxiv.org/abs/1511.05493
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.1145/3442381.3449802
http://proceedings.mlr.press/v119/wang20k.html
https://doi.org/10.48550/arXiv.2212.11491
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1145/3551349.3556931
https://doi.org/10.1145/3551349.3556931
https://doi.org/10.1145/1571941.1571963
https://github.com/pppppkun/falcon
https://github.com/pppppkun/falcon

[60] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American statistical association, vol. 56, no. 293, pp. 52–64, 1961.

[61] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=SJU4ayYgl

[62] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 1024–1034.

[63] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. [Online]. Available: https://openreview.net/forum?id=rJXMpikCZ

[64] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Networks Learn. Syst., vol. 32, no. 1, pp. 4–24, 2021. [Online].
Available: https://doi.org/10.1109/TNNLS.2020.2978386

[65] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural
language supervision,” in Proceedings of the 38th International

Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, ser. Proceedings of Machine Learning Research, M. Meila and
T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 8748–8763. [Online].
Available: http://proceedings.mlr.press/v139/radford21a.html

[66] Z. Yang, Y. Cheng, Y. Liu, and M. Sun, “Reducing word omission
errors in neural machine translation: A contrastive learning approach,”
in Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, A. Korhonen, D. R. Traum, and
L. Màrquez, Eds. Association for Computational Linguistics, 2019, pp.
6191–6196. [Online]. Available: https://doi.org/10.18653/v1/p19-1623

[67] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning
of sentence embeddings,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021,
M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association for
Computational Linguistics, 2021, pp. 6894–6910. [Online]. Available:
https://doi.org/10.18653/v1/2021.emnlp-main.552

[68] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. Gonzalez, and I. Stoica,
“Contrastive code representation learning,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih,
Eds. Association for Computational Linguistics, 2021, pp. 5954–5971.
[Online]. Available: https://doi.org/10.18653/v1/2021.emnlp-main.482

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/TNNLS.2020.2978386
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.18653/v1/p19-1623
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.482

	Introduction
	Methodology
	Motivating Example
	Problem Statement
	Our Approach

	Design
	Data Pre-processing
	Representation Learning
	Model Architecture
	Contrastive Learning

	Learning to Rank

	Experiment Design
	Industrial Subject Systems
	Compared Approaches
	Evaluation Setup

	Result Analysis
	RQ1: Effectiveness of Falcon
	RQ2: Cross-project Effectiveness of Falcon
	RQ3: Ablation Study
	RQ4: Efficiency of Falcon
	Threats to Validity.

	practical evaluation
	Related Works
	Conclusion
	References

