
Mobile GUI test script generation from natural language
descriptions using pre-trained model

Chun Li
chunli@smail.nju.edu.cn

State Key Laboratory for Novel Software Technology, Nanjing University

Software Institute, Nanjing University

Nanjing, Jiangsu, China

ABSTRACT

GUI test scripts are valuable assets to guarantee the quality of mo-

bile apps; however, manually writing executable GUI test scripts can

incur huge cost. In this paper, we propose an approach to the gen-

eration of test scripts from the natural language descriptions, with

the help of descriptions to locate elements and use the attributes of

elements to select actions to construct the corresponding events.

The construction of test scripts with the help of natural language

descriptions can greatly reduce the burden of testers and is robust

to changes in the position of GUI elements.

ACM Reference Format:

Chun Li. 2022. Mobile GUI test script generation from natural language

descriptions using pre-trained model. In IEEE/ACM 9th International Con-

ference on Mobile Software Engineering and Systems (MOBILESoft ’22), May

17–24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3524613.3527809

1 INTRODUCTION

In the last decade, with the popularity of mobile devices, the demand

for mobile apps has been increasing. Among the many mobile

platforms, the highest share is on Android. There are already more

than two and a half million Android applications in the Google Play.

It is imperative to guarantee the quality of mobile apps.

Compared with traditional software testing, GUI testing has been

the dominant testing approach for mobile apps. The automation of

testing is attractive, and there are already many tools. However, it is

difficult for these tools to consider the tester’s intention regarding

the app logic, and thus, although they substantially reduce the

tester’s burden, the testing efficiency is lower than that of manually

written GUI test scripts.

While GUI test scripts can be automatically executed using tools

such as Appium or Robotium, the central task of writing GUI test

scripts—to locate the GUI elements and then perform operations

on them such as click and swipe—still requires manual effort. It can

be a tedious and time-consuming task. Even worse, GUI test scripts

become unavailable during version iterations, as elements may be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9301-0/22/05. . . $15.00
https://doi.org/10.1145/3524613.3527809

Figure 1: Architecture of the approach

added, deleted, or changed in position on the GUI. Therefore, GUI

test scripts are fragile.

In the process of writing test scripts, testers will often code their

scripts based on some documents. For example, when a use case

in the document requires the creation of a contact, the tester will

look for an element in the corresponding GUI context that can

accomplish the function and then perform an action on the element.

These descriptions of events contain essential content related to

the application logic and GUI elements.

This inspires us to generate the test events in a script from the

natural language descriptions of the events. We propose a method

that uses SBERT [6] to compute the semantic similarity between

the natural language description of the event and the attributes

of GUI elements to determine the specific element corresponding

to the event to be executed. Then we derive the test action of the

event from the type of the located element. In this way, the tester

only needs to write the natural language descriptions for the test

script, which not only improves readability but also significantly

reduces the cost of manually writing and maintaining test scripts.

2 APPROACH

Before presenting our approach, we first define 𝑡𝑒𝑠𝑡 𝑒𝑣𝑒𝑛𝑡 (𝑒𝑣𝑒𝑛𝑡
for short). An 𝑒𝑣𝑒𝑛𝑡 is an action executed on an element of the
GUI under test, i.e., 𝐸𝑣𝑒𝑛𝑡 := {𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟, 𝐴𝑐𝑡𝑖𝑜𝑛}. The 𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 is
a dictionary containing the text, content-desc and resource-id

properties of the GUI element, which is used to locate the element on

the current GUI, and𝐴𝑐𝑡𝑖𝑜𝑛 is the test action that can be performed
on the element, such as Click, Swipe, etc.

Figure 1 presents the Architecture of our approach. In Figure

1, 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 is the natural language description of the event
that the tester intends to trigger. It contains the content related to

the app logic. In addition, each 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 can only correspond
to one but not multiple events. To locate the elements, we first

calculate the semantic similarity between the description and all

the elements on the current GUI. The semantic similarity between

112

2022 IEEE/ACM 9th International Conference on Mobile Software Engineering and Systems (MobileSoft)

Authorized licensed use limited to: Nanjing University. Downloaded on May 06,2023 at 03:48:29 UTC from IEEE Xplore. Restrictions apply.

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Chun Li

Figure 2: build script from description

the description and the element is sorted by confidence.We input the

text, content-desc, and resource-id [1] of the element into SBERT [6]

to calculate the semantic similarity with the description and select

the maximum of them as the confidence of the element and the rest

of elements will be used as candidates. Particularly, if resource-id

is a combination of package and id, only id is selected; and if there

is an empty attribute, it is not input for calculation.

After locating the element, we devise the test action according to

the type of the elements. Since most of the actions in the description

are related to the app logic, their descriptive words and the actions

that the mobile app accepts can be very different, such as create

and click. There can be almost no semantic similarity, making it

difficult to translate directly from descriptive words to actions. Still,

we can construct events corresponding to the type of the element,

since there is a limit to the actions that a specific type of element

can accept. For example, if the type of the element is a button, we

can try to combine it with click/double click, etc.

Figure 2 shows how we generate the script using our approach.

First, we take the description "edit the event item" and the XML

of the current GUI to locate the element. The element with the

highest confidence has been marked with the blue box, and on the

right is its properties (only key information is shown). According

to the Class information in the red box, we know that its type is

TextView and choose the click action. Combining the action with

the attributes, we get a test script shown in the bottom of the figure.

If a test action cannot be constructed on the current GUI or the

package of the current GUI is different from the app under test,

our tool will perform tracing. It will uninstall and reinstall the app

and re-execute the events except the event causing tracing. Assum-

ing that the events have been executed are 𝐸𝑣𝑒𝑛𝑡1, . . . , 𝐸𝑣𝑒𝑛𝑡𝑖 , our
method will re-execute the 𝐸𝑣𝑒𝑛𝑡1, . . . , 𝐸𝑣𝑒𝑛𝑡𝑖−1, for 𝐸𝑣𝑒𝑛𝑡𝑖 , assum-
ing it is constructed by 𝑑𝑖 descriptions , and the events constructed
by 𝑑𝑖 is 𝑆𝑖 , we will select the event with the highest confidence
from 𝑆𝑖 to replace 𝐸𝑣𝑒𝑛𝑡𝑖 (note that 𝐸𝑣𝑒𝑛𝑡𝑖 is not in 𝑆𝑖), then exe-
cute it. If executing the new event still results in tracing, repeat the

above process. When all events in 𝑆𝑖 have been tried, it will trace
to 𝐸𝑣𝑒𝑛𝑡𝑖−1, and then continue the above process.

3 CASE STUDY

We conduct a preliminary case study on three open-source apps

and prepare test descriptions ourselves. The result of our case study

is shown in Table 1. We record the following information:

project NoS NoD AoD SCD SES

Calendar 3 16 5.3 13 2

Wallet 2 15 7.5 13 1

AcDisplay 2 12 6 11 1

Table 1: Result

• NoS: number of scripts

• NoD: number of descriptions

• AoD: average number of descriptions per script

• SCD: successfully constructed description

• SES: successfully executed script

As Table 1 shows, our approach successfully constructed 37

test actions from 43 descriptions, resulting in an 86% success rate.

We also studied the reasons for the incorrect constructed actions.

As Table 1 shows, our approach successfully constructed 37 test

actions from 43 descriptions, resulting in an 86% success rate. We

also studied the reasons for the incorrect constructed actions. In

Calendar, an incorrect construction is caused by selecting a wrong

element, resulting in an error in the construction of the subsequent

action. The reasons for Wallet is more interesting. For example, one

incorrect action takes the parent element of the correct element

because the parent element has the needed properties while the

correct element is missing these properties. We will improve our

approach based on the study of these incorrections in the future.

4 RELATEDWORK

The recording technique is a way to generate test scripts [3–5],

with the disadvantage that some events cannot be recorded and lack

robustness to evolution of apps. Work [2] uses machine learning

and formal description to generate robust and reusable test scripts.

Our work differs from his in that we only require descriptions that

are relevant to the app logic and do not require formalization.

5 CONCLUSION

We propose a method for generating test scripts based on natural

language descriptions using pre-trained models. While this method

has high accuracy in constructing events, it does not require too

many restrictions on description, which can reduce the burden of

testers.

REFERENCES
[1] Google. 2022. guide of resources. https://developer.android.com/guide/topics/

resources/providing-resources.
[2] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: using machine learning

to synthesize robust, reusable UI tests. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 269–282.

[3] Yongjian Hu and Iulian Neamtiu. 2016. VALERA: an effective and efficient record-
and-replay tool for android. In Proceedings of the International Conference on Mobile
Software Engineering and Systems. 285–286.

[4] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,
Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and replay for android: Are
we there yet in industrial cases?. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 854–859.

[5] Stas Negara, Naeem Esfahani, and Raymond Buse. 2019. Practical android test
recording with espresso test recorder. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE,
193–202.

[6] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

113

Authorized licensed use limited to: Nanjing University. Downloaded on May 06,2023 at 03:48:29 UTC from IEEE Xplore. Restrictions apply.

