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Abstract—Mobile applications are increasingly integral to our
daily lives. Currently, the correctness of GUI functions of
mobile application is mainly ensured by executing manually
written test scripts. However, manually writing these test
scripts is not only time-consuming but also costly. Moreover,
test scripts are highly vulnerable to application modifications
and prone to corruption. In this paper, we propose a novel
approach for writing test scripts that enables testers to directly
express test intents in natural language within the script.
Additionally, we present a new test script generation tool
that transforms these test intents into their corresponding test
events. Our proposed tool, named GenDroid, employs pre-
trained models in conjunction with random forest to facilitate
the conversion of test intents into the respective test scripts.
To further alleviate the workload of testers and enable them
to focus on composing critical test intents, we leverage the
application’s UI transfer graph to facilitate the automated gen-
eration of other test events, such as jump actions, throughout
the generation process. Our results indicate an intent coverage
of 88.1%, a notable 20.68% improvement compared to the
similar-purpose tool, seq2act.

Keywords–Android testing; Test script generation; Natural
language processing

1. INTRODUCTION

Currently, the predominant approach for GUI testing in mobile
applications involves manual creation of test scripts followed
by their execution through automated testing frameworks
such as Appium1 or Robotium2. Nevertheless, manual script
writing proves to be a time-consuming, laborious, and ex-
pensive process [1]. The inclusion of interface widgets in
test scripts, primarily through absolute positions or widget
attributes, renders the scripts highly susceptible to widget
positioning changes and prone to corruption. Moreover, hard-
coding absolute positions or widget attributes circumvents the
ability of the compiler or interpreter to verify the accuracy of
this data. In certain cases, the failure of executing a test event
can also result in subsequent test events not being executed.
There have been initial endeavors to enhance the process of
test script creation. Nevertheless, testers still encounter the
need to hard code control properties within the test script [2,
3, 4, 5]. Simultaneously, these methods often necessitate the

1https://appium.io
2https://github.com/RobotiumTech/robotium

specification of formal rules, which can potentially impose an
additional burden on testers.
To address the limitations imposed by manually written test
scripts, many researchers have proposed approaches [6, 7, 8,
9, 10, 11] to test applications by automating the exploration
of applications. Despite the significant advancements in ex-
ploration approaches, which enable high code coverage and
facilitate the identification of application defects, these meth-
ods often lack explicit guidance on test intent. Consequently,
it becomes challenging to effectively test specific features of
the application [8, 12].
To tackle the challenges mentioned above, we propose a new
approach to writing test scripts to replace manual operation
such as widget positioning. In our approach, testers only need
to write natural language descriptions of the corresponding
test events, which we refer to as test intent. There are two
notable advantages to adopting this approach. Firstly, utilizing
natural language offers significant flexibility, aligning with
human usage patterns and avoiding additional burdens on
testers. Secondly, by eliminating the need for testers to hard
code control properties or locations within the test script, the
generated scripts become more resilient to widget changes
or application evolution, thereby enhancing their overall ro-
bustness. To further reduce the burden on the tester, we relax
the test intent requirement as much as possible; informally, it
only needs to contain a verb and a noun phrase like “modify
account setting”. We will offer a comprehensive definition and
elaborate description of test intent in Section 2.
In order to facilitate the transformation of testers’ test intent
into their corresponding test scripts, we propose a novel
method for test script generation called GenDroid. This ap-
proach leverages a pre-trained language model and random
forest to achieve its objective. GenDroid employs a matching
mechanism to associate widgets with their respective test intent
and execute the relevant actions. To accomplish this, we extract
both semantic information and positional information from the
provided test intent and widget properties. Specifically, we
capture the semantic content of the test intent and widgets,
and compute the semantic similarity between them utilizing
SentenceBERT [13]. Subsequently, we employ random forest
to integrate the semantic similarity scores with the positional
information, thereby effectively matching the widgets.
As test scripts typically consist of multiple test intents, it is
common for there to be numerous transitions or jumps between
two consecutive test intents. In order to further alleviate
the burden on testers, GenDroid incorporates an automatic
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generation mechanism for test events that facilitate omitted
test events generation between these adjacent test intents. To be
more precise, prior to translating the test intent into test scripts,
we utilize Droidbot [14], a lightweight mobile application
automation exploration tool, to generate a UI transfer graph
for the target application. Before each match based on the test
intent, we employ the UI transfer graph to identify the widget
with the highest confidence and transition the application to the
corresponding target state. We consider the events generated
during the transition process as omitted test events. By doing
so, we ensure that the application is in the appropriate state
before executing the matching process for the test intent. In
addition to facilitating the connection between adjacent test
intents, this mechanism also effectively reduces the impact of
matching failures in previous test intents on the subsequent
matching of test intents.
To assess the effectiveness of our proposed approach, we
conducted experiments utilizing the PixelHelp dataset [15].
This dataset comprises 187 tasks, each consisting of multiple
test intents. Our tool was evaluated on this dataset, resulting
in an impressive intent coverage of 88.1%. This represents
a notable improvement of 20.68% compared to the previous
work, seq2act [15]. Furthermore, to evaluate the applicability
of our tool in real-world scenarios, we selected 11 open-source
applications from F-Droid for additional evaluation. When
combined with the PixelHelp dataset, our approach achieved
an intent coverage of 84.4% across a total of 636 test intents.
In this paper, we make the following main contributions:
• We propose a new approach to writing mobile application

test scripts. Testers can write test intents directly, eliminat-
ing the time and other costs required to write test scripts
manually.

• We propose a script generation method based on a pre-
trained model with a random forest, which generate test
scripts by matching the corresponding widgets according to
the test intent.

• We have conducted large-scale experiments, and the results
show that our approach is more generalizable and outper-
forms existing approaches in test intent coverage. Both the
tools and data will be publicly available to facilitate future
research.

The remainder of the paper is structured as follows. Section
2 gives formal definition of test intent. Section 3 provides
an overview of our framework. Section 4 presents the widget
matching module. Section 5 presents the state transfer module.
Section 6 presents the evaluation results. Section 7 surveys
related work and Section 8 makes a conclusion.

2. DEFINITION OF TEST INTENT

In order to overcome the drawbacks associated with manual
test script creation, we present a novel approach that involves
directly writing test intents. This section focuses on providing
a formal definition of test intent. Initially, we identify the
fundamental components of a test intent by analyzing the
crucial steps of test events. Subsequently, we draw insights
from the AndroidHowTo dataset [15] to discern three distinct

characteristics observed when describing test events in natural
language. Finally, we will give a formal definition of test
intent.
Based on the documentation of Appium, a widely recognized
cross-platform GUI testing tool, the code within the test script
can be succinctly summarized into two primary steps. The ini-
tial step involves positioning the widget through the utilization
of either the absolute position or the properties of the widget.
Subsequently, actions are performed on the identified widget.
To illustrate this process, consider the following example:

close_dialog_button= \
find_element_by_id("android:id/button1")

close_dialog_button.click()

The first line define the variable “close dialog button”
as a widget located by the attribute “resource-
id=android:id/button1”. Then second line perform “click”
on it. To replace the current test script, the test intent
should naturally include the description of the widget and
the corresponding action. In this example, the test intent
is to “click the close dialog button”. Hence, the essential
components of a test intent should consist of the description
of the widget and the corresponding action.
To obtain standardized patterns for describing events in natural
language, while avoiding excessive constraints on testers,
we drew inspiration from the AndroidHowTo dataset [15].
This dataset, which consists of a collection of 9,893 distinct
English How-To instructions obtained through web data crawl-
ing, specifically focuses on operating Android devices. We
preserved the three fundamental characteristics observed in
natural language event descriptions, namely position words,
verb types, and singular event occurrences, and incorporated
them into our test intent.
a) Position Words: Natural language descriptions of events
frequently incorporate position words, such as “at the top
left.” While our initial aim in introducing the test intent was
to mitigate the extensive burden of widget localization on
testers, we observe that the substantial prevalence of locators
within the dataset indicates that employing natural language
to express the approximate widget location is an effective and
convenient means to narrow down the widget search.
b) Verb Types: We found that besides the intent like “click
close dialog button” related to operating devices, intent like
“select verification method” or “change keys respond” which
is related to application logic, also appear in the dataset. The
main difference between them is types of verb. Verbs such
as click, tap, etc. are related to operating devices, while
create, change are related to function and logic. To take
this into account, we restrict the natural language to the test
task only and not to the specific words used.
c) Singular Event: We observed that nearly all natural lan-
guage descriptions revolve around a single event. This charac-
teristic simplifies the specification of the test intent and allevi-
ates the burden on testers by avoiding the need for excessively
long sentences. Additionally, this singular focus facilitates the
translation of the test intent into the corresponding test code.
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Scenario: delete event item

Given screen is detail_of_day 
When click@event_item

And click@delete

And click@YES

Then screen is detail_of_Day

And set no_event_item to true

Test Intent:

1.Edit event item

2.Delete

3.Confirm

Figure 1. The difference between cucumber and test intent on
deleting event items

Now, we can give a formal definition of test intent based on
what we have learned about the dataset. A test intent is a
natural language description that expresses and only expresses
a single test event. The test intent must contain a description
of the widget with the corresponding action. Location related
information is optional.
Compared to the other format used to express test events,
the most similar format is gherkin [5]. Gherkin is a formal
language used in the Behavior-Driven Development tool cu-
cumber to describe test scenarios. It is also used to generate
test scripts in appflow [2]. The Figure 1 shows the difference
between gherkin and test intent on the same task. Gherkin
requires pre and post-conditions; acceptable actions are re-
stricted and must have widget properties. Gherkin contains
more detailed information, but it also imposes a writing burden
on testers. In contrast, our proposed test intent is more concise
and easy to use. In the following section, we demonstrate how
to convert the test intent into the corresponding test script.

3. APPROACH OVERVIEW

The overview of GenDroid is shown in Figure 2. GenDroid
consists of two modules. The first module is Widget Match-
ing, which is used to match the test intent with specific
controls. The second module is the Path Planning, which is
used to supplement test events that may be missing between
two consecutive test intents.
Widget Matching involves several steps to match the test intent
with the corresponding widget. Firstly, we extract semantic
information and optional positional information from both the
test intent and the widgets in layout. Secondly, we employ
SentenceBERT, a pre-trained language model, to compute the
semantic similarity between the test intent and the widgets.
Finally, we combine the semantic similarity with the location
information using Random Forest. The widget with the highest
confidence assigned by Random Forest will be selected.
To generate potentially omitted test events, we employ Path
Planning before matching each test intent. Firstly, we obtain
the current state si of the application and determine the target
state si+1 by matching the test intent with the widgets present
in the entire UI transfer graph. Secondly, once si+1 is deter-
mined, our path planning will generate paths between si and
si+1 and verify them. We will select the highest confidence
path P from them. Finally, we migrate the application to
state si+1 by following path P . The events present in the
generated path P are considered as omitted events that need
to be included in the test execution.

Next, we will introduce the mechanism of widget matching,
including the method of feature extraction, the process of
computing semantic similarity, and the construction of random
forests (Section 4). Then, we will show the path planning mod-
ule’s operation mechanism and the path confidence calculation
method (Section 5).

4. WIDGET MATCHING

The goal of Widget Matching is to compute the confidence
value between the test intent and the widget, enabling the
ranking of widgets on the interface and selection of the widget
with the highest confidence as the target widget. The workflow
of widget matching initiates with the extraction of the semantic
and positional features from both the test intent and the
widget. Subsequently, these semantic features are employed to
calculate the semantic similarity between the test intent and the
widget. Finally, the positional features, along with the semantic
similarity, are fed into a random forest model. The resulting
output of this model serves as the confidence measure between
the test intent and the widget. In the subsequent sections, we
provide a detailed elaboration of each individual step.

4.1. Feature Extraction

We initiate the process by extracting the semantic and posi-
tional features from both the test intent and the widget. In the
case of the test intent, which is expressed in natural language,
we employ part-of-speech tagging (POS Tagging) [16] to
extract its semantic and positional features. POS Tagging
facilitates the identification of prepositions in instances where
positional information is present within the test intent. Conse-
quently, we can utilize POS Tagging to isolate the positional
features within the test intent. By conducting a thorough inves-
tigation of the AndroidHowTo dataset, we have incorporated
two positioning methods, namely absolute and relative, which
are distinguished based on specific keywords. Additionally,
for the remaining portion of the test intent, we utilize POS
Tagging to analyze the verbs and their corresponding noun
phrases. For example, the phrase ”create new contact” can be
segmented into the action ”create” and the widget information
”new contact.” The rationale why we distinguish verbs from
corresponding noun phrases will be explained later.
Regarding the widget, according to official documentation
3 4 5, there are three properties, namely text, content-desc,
and resource-id, which serve as indicators of the widget’s
functionality. Therefore, we employ these properties as the
basis for extracting semantic information from the widget.
These properties written in natural language can be analyzed
using POS Tagging to extract their verbs and corresponding
noun phrases as semantic features. For example, “Delete” will
be divided only into action “Delete”, “newTask” should be
divided into action “new” and object “task”. The positional
feature of widget (absolute position) could be extract from
bound attribute.

3https://developer.android.com/guide/topics/resources/providing-resources
4https://developer.android.com/guide/topics/ui/accessibility/principles
5https://developer.android.com/reference/androidx/test/uiautomator/UiSelector
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Figure 2. Overview of GenDroid

The reason why we distinguish actions from corresponding
noun phrases when extracting semantic features is because
they are often unrelated semantic parts. Different verbs can be
paired with different noun phrases, and vice versa. Therefore,
if no differentiation is made, it may result in only sub-optimal
results in subsequent semantic similarity calculations. For
example, if the test intent is “create new contact” and there
are two widget which properties is “create group” and “new
contact”. If we do not distinguish between verbs and nouns,
then the test intent and the first widget both contain “create”,
which may result in high semantic similarity between them.

4.2. Semantic Similarity Calculation

Algorithm 1: Semantic Similarity Calculation
Input: TestIntent, Widget
Output: SemanticSimialrity

1 Attribute ← GetAttribute(Widget) ;
2 WidgetVerb, WidgetNoun ←

FeatureExtraction(Attribute) ;
3 IntentVerb, IntentNoun ←

FeatureExtraction(TestIntent) ;
4 VerbSimilarity ← Similarity(WidgetVerb,

IntentVerb) ;
5 NounSimilarity ← Similarity(WidgetNoun,

IntentNoun) ;
6 WholeSimilarity ← Similarity(Attribute, Intent) ;
7 SemanticSimilarity ← Max(VerbSimilarity,

NounSimilarity, WholeSimilarity) ;
8 return SemanticSimilarity

After extracting the semantic features of the test intent and
widget, the next step is to calculate the semantic similarity. In
this work, we utilize the pre-trained model SentenceBERT [13]
for the purpose of conducting the semantic similarity cal-
culation. The decision to use the pre-trained model is two-
fold: (1) Based on our analysis of the AndroidHowTo dataset,
we have observed that nearly all test intents share the same
semantic space as that of general-purpose usage. (2) The

attributes of the widget, expressed in natural language, also
share the same semantic space as that of general-purpose
language. Therefore, employing a language model pre-trained
on large-scale general-purpose corpora can lead to improved
effectiveness and reduced costs in the calculation of semantic
similarity.
Another consideration is the choice between a sentence-level
model and a word-level model. The utilization of a sentence-
level model is preferred due to the nature of the test intent,
which is a complete sentence, and the fact that widget at-
tributes often consist of multiple words. Employing a word-
level model does not adequately capture the overall meaning
of the sentence [17]. Algorithm 1 provides an overview of the
semantic similarity calculation process.
First, we obtain the first non-empty semantic attribute in the
order of text, content-desc, resource-id (Line 1). Then, we
extract the semantic features from the test intent and attributes
(Line 2-3). Next, we calculate the semantic similarity of verbs
and noun phrases in the test intent and attributes (Line 4-5).
We also considered the direct semantic similarity between test
intent and attribute (Line 6). Finally, we aggregate these three
semantic similarities and select the most significant similarity
between the test intent and the widget (Line 7).
We do not choose to use the three attributes at once because
they have different purposes. Although both text and content-
desc contain the semantic information of the widget, text is
displayed to the user, so we believe that text is more reflective
of the semantic information of the widget than content-desc.
resource-id is used by developers to reference different con-
trols in their code, sometimes only containing some category
information. So, when we calculate the semantic similarity,
we try text, content-desc and resource-id in order of priority.

4.3. Feature Fusion

Next, we discuss how to fuse positional feature with semantic
similarity. To achieve this, we curated a subset from Pixel-
Help [15] and utilized it to create a new dataset. Subsequently,
we trained a Random Forest [18] model on this dataset to
effectively combine feature information from diverse sources.

351



The resulting output of the Random Forest serves as the
confidence measure between the test intent and the control.
The reason why we use Random forest is that the positional
feature in the test intent is expressed by natural language,
and usually can only represent a certain area on the screen,
while the positional feature in the widget accurately reflects the
position on the screen. Therefore, the positional information
in test intent and widget cannot be normalized. On the other
hand, positional feature is discrete, while semantic similarity
is continuous. According to the characteristics of our data, it
is reasonable to use Random forest.
To begin, we construct a dataset that corresponds to our
requirements. Initially, we select a subset from the PixelHelp
dataset. For each test intent within this subset, we replicate
it on a virtual machine to acquire the corresponding widget.
Subsequently, we extract the features from both the test intent
and the widget, employing the methodology outlined in Sec-
tion 4-A. We calculate the semantic similarity between them
utilizing the algorithm described in Section 4-B. Ultimately,
we generate a data entry for each test intent and widget pair,
encompassing their semantic similarity, positional information
within the test intent, and positional information within the
widget.
In order to prevent class imbalance problems [19], we add
counterexamples by data augmentation. Specifically, for pos-
itive examples lacking positional information, we want the
model to capture the differences caused by the difference
in semantic similarity, so we generate counterexamples with
arbitrary locations and lower semantic similarity. For positive
examples with positional information, we want the model to
capture the differences due to location information when the
semantic similarity is very close. So, we generate counterex-
amples with close semantic similarity but different location
information. Finally, we generate 144 class-balanced samples,
each of which is a vector containing the positioning method,
the positioning information, the position of the widget, the
screen size or the position of the reference widget, and the
semantic similarity of the test intent to that widget.
Finally, we trained a dichotomous random forests model,
removed the layer of output categories, and directly used its
output probabilities as the confidence between test intent and
widget. After we get the widget with the highest confidence,
we will synthesize the test events based on the type of widget.
Currently, our tool only supports the two most commonly used
operations, click and set_text. The remaining operations
will be supported in the future.

5. PATH PLANNING

To further reduce the burden on testers and increase the
flexibility of test intents, we allow intervals between successive
test intents, i.e., we always assume that the current application
state does not contain the widget corresponding to the test
intent. Formally, let the current state of the application be si,
and the target state that contains the widget corresponding to
the next test intent is sj . We assume that i ̸= j.

We use DroidBot [14] to generate a UI transfer graph G for
the application under test. Each node in G represents a state
s, and each edge (si, sj) represents a transfer between two
states via event. Here, we use Droidbot’s definition of a state,
which considers the class, resource-id, text, enable, checked,
and selected attributes for each widget on the activity.
Static analysis techniques [20, 21] can also be used to generate
UI transfer graph. However, it will produce many paths that
are unreachable or duplicative, which requires extensive path
validation for practical use. Although more time-consuming,
the dynamic analysis technique can generate more accurate
UI transfer graphs. Therefore, we believe such a time cost of
dynamic analysis is reasonable for achieving better UI transfer
graph. Furthermore, considering that generation process is
offline, the time cost of dynamic analysis is acceptable in
practice.
Given that the current application is in state si, our initial
objective is to identify the target state sj on graph G where
the widget with the highest confidence, based on the current
test intent, is located. Subsequently, we generate all possible
simple paths from the current state si to the target state
sj . These paths are then verified and sorted based on their
confidence values. The path with the highest confidence is
selected as the optimal transfer path. The detailed planning
process is illustrated in Algorithm 2.

Algorithm 2: Path Planning
Input: TestIntent, UI Transition Graph G, CurrentState cs
Output: Path

1 Widgets ← GetAllWidgets(G) ;
2 Widgets ← SortByConfidence(Widgets, TestIntent);
3 foreach w in Widgets do
4 States ← GetStatesByWidget(w) ;
5 Paths ← ∅ ;
6 foreach ds in States do
7 ps ← FindAllSimplePath(cs, ds) ;
8 Paths.Extend(ps) ;
9 end

10 Candidates ← ∅ ;
11 foreach p in Paths do
12 result ← Validate(p) ;
13 if R then
14 Candidates.Append(p);
15 end
16 Reset(cs) ;
17 end
18 Candidates ← Sort(Candidates, TestIntent) ;
19 if Candidates ̸= ∅ then
20 return Candidates[0]
21 end
22 end
23 return None

Firstly, we extract all widgets from graph G and calculate their
respective confidences in relation to the current test intent.
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Subsequently, we sort the widgets based on these confidence
values (Lines 1-2). For each widget, we locate all candidate
states that contain the widget (Line 4) and compute all simple
paths from the current state to each candidate state (Lines 6-
9). Once all paths have been obtained, the verification process
begins (Lines 11-17). Path validation entails executing the
events along the path. If the path can be executed successfully,
it passes the validation; otherwise, it does not (Lines 11-17).
After each path is verified, we reset the system to the current
state (Line 16). Specifically, we uninstall and reinstall the
application, restoring the application to its initial state and
then transitioning it to the current state. Ultimately, the path
with the highest confidence is selected (Lines 18-20).
We prefer to choose paths that are shorter and have higher
semantic similarity to the test intent for two reasons: (a)
considering the locality principle, the widgets corresponding to
adjacent test intents are more likely to be close to each other on
the graph, so we prefer to choose shorter paths; (b) if the paths
pass the validation, we want the widget corresponding to the
test events on the paths associated with the test intent as much
as possible. To consider both simultaneously, we borrowed
from CraftDroid [22], with the following formula.

C(path) = avg(C(widgets, TestIntent))
1 + log(len(path))

Let C represent the confidence. The confidence of a path is
calculated as the average of the confidence of the widgets
involved in the events along the path, divided by the log
of the path length. The use of log ensures that our formula
exhibits greater sensitivity to shorter paths, while diminishing
the emphasis on path length when all paths are long. Instead,
the focus is placed on the semantic similarity between each
widget and the test intent.

6. EVALUATION

In this Section, we will look at two main areas: 1. the ability
of the widget matching module to find the correct widget, and
2. the ability of the entire tool to translate test intent into a test
script. We focus mainly on answering the following research
questions:
RQ1: Widget Matching Module. Can our widget matching
module find the correct widget based on the test intent?
RQ2: Test Intent Coverage. How does GenDroid compare
to previous tool in terms of test intent coverage?
RQ3: Impact Factor. What are the most important reasons
affecting the capability of GenDroid?

6.1. Experimental Setup

a) Dataset: We chose the PixelHelp dataset mentioned in
seq2act [15], which has 187 tasks containing multiple test
intents. Since the paper proposing the dataset does not mention
what version and device of the virtual machine the dataset
was built on, we manually re-executed these 187 tasks on
our experimental virtual machine. We ended up with 127
successfully running tasks and 387 test intents. The rest of
the tasks were missing UI, or the application could not be

launched due to version issues. For the tasks that could not
run successfully, we discarded them because they could not
convert successfully from test intent to test script.
In addition to the PixelHelp dataset, we collected eleven ap-
plications from F-Droid to verify our approach’s applicability.
Our collection strategy was as follows: firstly, since GenDroid
cannot support complex interactions, we excluded games,
images, and multimedia-related applications. Secondly, we
wanted the applications not to have frequent interface changes
because of network-related features, which would make the
applications unstable, so we excluded applications that relied
too much on network. Among the remaining applications,
we randomly selected 11 applications as our benchmark. We
convened eleven graduate students with Android development
experience to write a total of 249 test intentions.
b) Widget Matching: We separate the widget matching mod-
ule from the tool to test our ability to match widgets. We
first set the application to the target state where contains the
target widget corresponding the test intent. Next, we input
the layout information of the application into the module and
check if the widget output by the module are correct. For
the random forests of widget matching, we extracted a series
of test intents from the discarded tasks in PixelHelp. We
collected and labeled the data as mentioned above. We used a
random hyperparameter search with ten-fold cross-validation
to determine the hyperparameters of the random forests.
c) Path Planning: We will only consider the first five widgets
during path planning to avoid the app searching for a long time
without stopping. Each widget considers the first five paths due
to the same reason above.
d) Test Intent Coverage: To make the comparison, we con-
ducted comparative experiments with seq2act on the 387
successful test intents. Since seq2act considers the startup
application as a test intent, we included the startup application
when conducting the comparison experiments. For a fair
comparison, we fed the original data to seq2act, collected its
output widgets and actions on each test intent, and played
them back on a virtual machine to get its final performance.
At the same time, we collect each widget and action output
by GenDroid and play it back on the virtual machine. Finally,
we compare the test intent coverage of both tools. In addition,
GenDroid is experimented with on our newly collected dataset
to verify the generalizability of it.
e) UI Transfer Graph: For UI transfer graph generation, we
used Droidbot to construct the UI transfer graph by generating
100 events for all tested applications according to the breadth-
first strategy. We set a five-second wait between every two test
events to bring the app back to a stable state.
f) Experiment Environment: All experiments were run on
macOS 11.5.2 with 2.6 Ghz 6 cores CPU and 32GB RAM.
The version of Android VM we used is Android 8.0 With
Google API, API level 26.

6.2. RQ1: Widget Matching Module

In this section, we will evaluate the random forests and widget
matching accuracy in the widget matching module.
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TABLE I
EVALUATION OF RANDOM FORESTS

Accuracy Precision Recall F1
89.6% 84.6% 91.6% 88%
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Figure 3. Roc curve and AUC

a) Random Forests: We gathered a dataset comprising 144
samples with balanced class distribution and allocated 80%
of them as the training set. To determine the optimal hy-
perparameters for the random forests classifier, we utilized
the random search algorithm implemented in SKlearn [23].
The random search consisted of 1000 iterations, with each
iteration employing a 10-fold cross-validation. The entire
process was completed in under twenty minutes on our exper-
imental machine. Once the hyperparameters were determined,
the performance of our model became fixed. Notably, our
model achieved an accuracy of 89% on the test set, which
demonstrates its capability to effectively integrate location
information with semantic information.
In addition to the accuracy, we also calculated our model’s
Precision, Recall, and F1 values, as shown in the Table I.
Precision and Recall reflect that our model is more successful
in distinguishing between positive and negative samples. In
contrast, the F1 value reflects that our model is more stable.
In addition, we examined the ROC curve of our model by
assessing the AUC (Area Under the Curve), as depicted in Fig-
ure 3. This analysis allowed us to evaluate the performance of
our random forests classifier across various threshold values.
Notably, our model achieved an impressive AUC area of 0.95
on the entire dataset, which signifies its reliability in accurately
distinguishing between positive and negative examples.
We also conducted a analysis of the model’s output. It was
observed that for correctly predicted samples, irrespective of
the positioning method, the model assigned higher confidence
to widgets exhibiting greater semantic similarity, particularly
when their positions were similar. When the test intent
contained positional information, the model demonstrated a
focus on such information, assigning higher confidence to
widgets that aligned more closely with the provided location.
Among the samples with prediction errors, there were positive
examples where the semantic similarity was too low to be dis-

TABLE II
COMPARISON WITH SEQ2ACT ON THE PIXELHELP DATASET

App Tasks Intents Coverage(%)
seq2act GenDroid

Chrome 28 138 84.1 (116/138) 87.7 (121/138)
Clock 11 41 82.9 (34/41) 97.6 (40/41)
Photo 16 58 87.7 (50/57) 87.7 (50/57)
Gmail 23 91 68.1 (62/91) 87.9 (80/91)
Setting 44 172 58.1 (100/172) 85.5 (149/172)
Contact 2 6 100 (6/6) 100 (6/6)
Google 3 9 77.8 (7/9) 77.8 (7/9)
Total 127 514 73.0 (375/514) 88.1 (453/514)

tinguished, even for less experienced developers. For instance,
the semantic similarity between ”Navigate Up” and ”Menu”
was less than 0.3, which posed challenges for our random
forests classifier. Fortunately, even if certain test intents were
not adequately covered during the process, it did not lead to
the failure of all subsequent test intents. This was attributed
to our path planning module, which ensured that even if an
incorrect widget was currently selected, it did not impact the
success rate of the next test intent. The path leading to the
state of the widget corresponding to the subsequent test intent
might include the actual corresponding test event from the
preceding test intent.
b) Widget Matching Accuracy: The accuracy of the widget
matching module was evaluated independently. To isolate
the impact of other modules, we manually configured the
application to the correct state, provided the test intent as
input to the widget matching module, and observed whether
the module correctly identified the corresponding widget. Out
of a total of 636 test intents, we successfully matched 590
corresponding widgets, resulting in a match rate of 93.7%.
In conclusion, using random forests effectively fuses semantic
similarity with positional features and gives confidence in the
widgets. The widget matching module achieved an accuracy of
93.7% on the dataset, and the test intent transformation using
the widget matching module is reliable.

6.3. RQ2: Test Intent Coverage

The criterion for testing intent coverage is that its correspond-
ing widget is triggered in the correct state. Table II shows
the results of our experiments with seq2act on the PixelHelp
dataset. Since seq2act treats launching the application as a test
intent, we have included it for a fair comparison.
GenDroid achieves a test intent coverage of 88.1%, surpassing
seq2act by 20.68%. In quantitative terms, GenDroid covers 78
additional test intents compared to seq2act. More specifically,
GenDroid exceeded seq2act’s test coverage on 4 apps, while
3 apps had the same test coverage as seq2act.
We conducted an investigation to understand the significant
disparity of nearly 30% observed in the Setting application
when comparing it against seq2act. Upon analyzing the ex-
perimental results, we discovered that seq2act solely selects
widgets that are currently present in the interface. However,
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there is a portion of the dataset where the test intent is dis-
continuous. Relying solely on the events generated by seq2act
makes it impossible to navigate to the correct state, resulting in
subsequent test intents remaining uncovered. In contrast, our
tool successfully addressed this issue by leveraging our path
planning module, which attempts to perform state transfers
before transitioning to each test intent. Similar challenges were
also encountered with the Gmail application, where certain
test intents were not accurately covered. Nevertheless, thanks
to our path planning module, subsequent test intents were still
successfully covered.
We also examined the reasons behind the successful outcomes
observed in the Chrome and Clock applications. Upon analy-
sis, we discovered that the main reason is the failure of seq2act
to correctly match the widget in the appropriate state. Given
that seq2act employs a deep neural network such as Trans-
former, it becomes challenging to pinpoint the exact reasons
for these inaccuracies. However, considering that widget prop-
erties are typically defined by developers to ensure readability,
they should ideally exist within the same semantic space as
a general-purpose domain. Furthermore, it is important to
note that seq2act has been trained solely on Android-related
datasets, specifically Rico [24] and AndroidHowTo [15]. This
limited training data may not capture the semantics of general-
purpose scenarios accurately. Consequently, adopting a pre-
trained model that already aligns with the desired semantic
space is a reasonable approach, which is supported by the
experimental results.
In addition to the PixelHelp dataset, we extended our evalua-
tion to include eleven other open-source software, measuring
the test intent coverage for each. The results of the experiments
are presented in Table III. The official code for seq2act
exclusively supports the PixelHelp dataset. Despite our diligent
efforts to adapt our dataset to meet the requirements of seq2act,
the official code remains nonfunctional. Consequently, we
solely considered the outcomes obtained using our tool for
these open-source software evaluations. Notably, launching
the application was not included as a test intent, as it was
not relevant for comparative experiments. we also provide the
results of an ablation experiment where we removed the path
planning module. These additional results are included in the
table for comparison.
The experimental results demonstrate a significant 20.05%
performance improvement achieved by incorporating the path
planning module. This improvement can be attributed, in
part, to the path planning module’s ability to ensure that the
failure of a preceding test intent does not impact the coverage
of subsequent test intents. Figure 4 illustrates an example
scenario where the path planning module is utilized. In this
case, Screen S1 transitions to Screen S2 using path planning,
but mistakenly selects the widget Help within the red box,
which is not the correct widget for the initial intent. Then,
Screen S2 then transitions to Screen S3 by clicking Help,
and subsequently, Screen S3 transitions to Screen S4 under
the guidance of the path planning module. Finally, the correct
widget Add activity within the red box is selected, fulfilling

TABLE III
TEST INTENT COVERAGE ON ALL APPLICATIONS WITH ABLATION

EXPERIMENTS

App Tasks Intents w/o Path Planning GenDroid
Chrome 28 110 82.7% (91/110) 84.5% (93/110)
Clock 11 30 96.7% (29/30) 96.7% (29/30)
Photo 16 41 82.9% (34/41) 82.9% (34/41)
Gmail 23 68 55.9% (38/68) 83.8% (57/68)
Setting 44 128 53.9% (69/128) 82.0% (105/128)
Contact 2 4 100% (4/4) 100% (4/4)
Google 3 6 66.67% (4/6) 66.67% (4/6)

Cleartodo 7 16 62.5% (10/16) 68.8% (11/16)
Currency 9 25 60% (15/25) 96% (24/25)

MyExpenses 9 34 70.6% (24/34) 82.4% (28/34)
Notify 6 24 70.8% (17/24) 91.7% (22/24)

MaterialFiles 6 15 80% (12/15) 100% (15/15)
ShopWithMom 4 10 40% (4/10) 60% (6/10)

SimpleCalendarPro 8 25 64% (16/25) 84% (21/25)
TodoList 10 31 87.1% (27/31) 93.5% (29/31)

SimpleBitcoinWallet 8 24 91.7% (22/24) 91.7% (22/24)
Wikipedia 4 20 70.0% (14/20) 45.0% (9/20)

Timetracker 8 25 72.0% (18/25) 96% (24/25)
Total 206 636 70.3% (447/636) 84.4% (537/636)

TABLE IV
TIME TO CONVERT TEST INTENT TO TEST SCRIPT

GenDroid Average(Second) Median(Second)
Origin 262 106.5

w/o Path Planning 26.5 25

the second intent.
In addition to test intent coverage, the efficiency of converting
test intent into test scripts is also crucial. One of the motiva-
tions of our work is to reduce the time overhead and cost of
testers. Therefore, we further counted the time spent on test
script generation by GenDroid.
We also investigated the efficiency impact of path planning
on GenDroid. During the statistical analysis, we found that
some scripts took significantly more time than others, causing
the mean to not accurately reflect the changes before and
after. Therefore, our primary focus was on changes in the
median. The results in Table IV show that the median time
increased from 25 seconds to 106 seconds after combining
path planning. Since this generation process is offline and one-
time, considering the 20.13% coverage improvement brought
about by path planning, these time costs are acceptable. The
increased time overhead primarily arises from the path valida-
tion process during path planning. During the verification of
each path, there are pauses inserted between executed events
to ensure application stability. Following the verification of
each path, the application is uninstalled and reinstalled to
restore it to its initial state, which also incurs a time overhead.
To maximize efficiency, we can cache paths that have been
verified as infeasible and compare new paths against them to
reduce computation and accelerate the process. This part of
the work will be integrated into our tool in the future.

6.4. RQ3: Impact Factor

The test intent coverage is a key metric for evaluating the
effectiveness of our tool, with its success heavily reliant on
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Test intent：click more icon Test intent：add activity
Screen (a) Screen (b) Screen (c) Screen (d)

Figure 4. A task of Timetracker in the dataset where the first test intent ”click more icon” is not covered correctly but does
not affect the success of subsequent test intents. The path planning module fixes this error automatically

the widget matching module’s ability to accurately match
the correct widget. Upon analyzing the test intents that were
incorrectly matched, we identified two main reasons for these
inaccuracies. Firstly, incomplete or missing properties of the
widget contributed to the incorrect matches. Secondly, incom-
plete UI transfer graphs also played a role in these errors.
Through our analysis of the experimental data, we identified
a need for better maintenance of widget properties in the
open-source applications. Specifically, we observed instances
where different widgets possessed identical properties, leading
to challenges in distinguishing between them based on sim-
ilarity during the path planning process. Figure 5 illustrates
an example from the Cleartodo software, where the widget
located in the lower right corner of the first figure and the
widget in the upper right corner of the second figure share the
same properties, despite serving distinct functions. The first
widget is responsible for adding new todo items, while the
second widget is used for adding new groups. This scenario
presents a significant challenge for our path planning module.
To tackle the second issue, achieving a complete UI transfer
graph for an application is nearly impossible due to the
limitations of dynamic or static exploration techniques in the
mobile application domain. We experimented with static ex-
ploration techniques such as TrimDroid [20] and Gator [21] to
generate UI transfer graphs. However, since these techniques
rely on static analysis, the generated state transfer graphs
are constrained by the accuracy of static analysis and may
not capture all widgets and activities relationships. We have
designed our tool with various interfaces to facilitate the
replacement of the UI transfer graph generation tool, allowing
for the exploration of alternative techniques.
In scenarios where the UI transfer graph is incomplete, the
target state associated with the test intent does not appear,
rendering our path planning module unable to identify the
correct path. This issue arises in the official Google app. For

text=“”

resource-id=“douzifly.list:id/fab_add”

content-desc=“” text=“”


resource-id=“douzifly.list:id/fab_add”

content-desc=“”

Figure 5. The Add button appears with the same properties
in different positions for different functions

instance, in the Setting application, there are intervals between
certain test intents. However, the widget corresponding to the
test intent is not present in the UI transfer graph, leading
to the failure of covering the test intent successfully. As
depicted in Figure 6, the left and right states correspond to
consecutive test intents. After completing the first test intent,
the application does not transition to the right state but remains
in an intermediate state. At this juncture, the path planning
module must transfer the application to the correct state;
however, the right state is absent from the transfer graph.
Consequently, it becomes impossible to cover the second test
intent.

6.5. Threats to Validity

a) Internal Threats.: The main internal threat comes from
the performance of the random forests. Due to the small
dataset for training the random forests, there may be overfitting
and insufficient data. For this threat, we conducted various
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Test Intent:

    tap apps & notifications 

Should be generated by 
path planning

Test Intent:

    click see all apps

Figure 6. The screenshot on the left is the initial state of the application. The application enters the state of the middle
screenshot after clicking Apps & notifications according to the first test intent. The path planning module should then migrate
the application from the middle screenshot state to the right screenshot state according to the next test intent.

experiments to validate the ability of the random forests and
experiments for the entire widget matching module to verify
its effectiveness. We will continue to collect more data to
optimize the model.
Also, our choice of Android version or virtual machine device
may lead to unreliable results in our experiments. For this
reason, we tried multiple Android versions and virtual machine
devices and chose the one that could reproduce the most test
intents.
b) External Threats.: The main external threat stems from
the potential bias in the test intent written for open-source
applications. To mitigate the possible bias, we gathered eleven
graduate students with Android development experience to
learn from actual data in PixelHelp and AndroidHowTo before
writing test intents for open-source applications.

7. RELATED WORK

We broadly categorize related work on mobile test script gen-
eration into (i) generation from mobile application exploration,
(ii) generation from record and replay, and (iii) generation
from synthesis and transfer.

7.1. Generation From Exploration

This part is mainly distributed in various Android GUI au-
tomation tests. Android GUI automation tests explore the
application by adopting different exploration strategies for the
application, and the events triggered during the exploration
process can be used to generate test scripts. Based on the
different exploration strategies, we can classify them. Some
tools [6, 25] adopt random strategies to generate input for
Android application. Monkey [25] is the most frequently
used Android testing tools. However, the generated test cases
contain a large number of noneffective or redundant events and
this will be a threat to the testing effectiveness. Model-based
approaches [26, 27, 28, 10, 29, 30, 9, 14] use dynamic or
static strategies to build models to describe the application’s
behaviors. This type of work is part of the cornerstone of
our UI transfer graph, where state granularity and comparison
are very important. Evolutionary algorithms are applied by
systematic strategies [8, 7] to generate input for Android

application. They can cover hard-to-reach codes. However,
the iterative process is often very time-consuming and can
generate erroneous scripts during the mutation process [31].
Machine learning also has been applied in Android GUI
testing. The learning approach [32, 33, 11, 34] can mitigate
the drawbacks of heuristics, but requires collecting enough
data for training, especially deep learning.

7.2. Generation From Record and Replay

Test record and replay works generate test scripts by recording
testers’ actions on Android device. The main reason [35]
for developing this tool is that the Android platform can be
adapted to many different devices, including different sizes
and versions. The record and replay technology can automate
the process to ensure that the software can run properly on
different devices. The most successful record and replay tools
in recent years include monkeyrunner [36], RERAN [37],
and Espresso [38]. All the record and replay tools have the
problem that some events cannot be recorded. In order to
cope with these problems, Google developed Espresso [38].
Espresso records events through Debug mode, unlike the above
three tools, which collect contextual information when the
interactive function is called.
The scripts generated by the recording-playback technique still
use absolute position [36, 37, 39] to position UI elements. This
leads to relatively fragile test scripts [35]. Our work instead
uses natural language to describe the test intent. It improves
the robustness of the test scripts by abstracting them. The path
planning module also makes our test scripts robust to changes
in interface elements.

7.3. Generation From Synthesis and Transfer

More similar to our work are Augusto [4] and AppFlow [2],
both of whom work on test generation for interface tests. They
consider application-agnostic features [4, 40] or generic GUI
patterns [41] for test generation. Augusto uses the formal
language Alloy [3] to describe the structure of the GUI in
a predefined test scenario with pre- and post-conditions to
generate GUI test code. AppFlow shares the same intuition
as Augusto, using predefined test scenarios containing pre-
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and post- conditions and GUI structure. The difference is that
AppFlow uses the formal description method Gherkin [5], a
more relaxed format compared to Alloy. Augusto and Appflow
use descriptions of test scenarios that are too complex relative
to our test intent and will create a new burden for testers.
Another related category of work is test script migration [22,
42, 17], based on the same motivation as Augusto and
Appflow, with the difference that they are migrating an existing
script to another application. CraftDroid [22] and AppTestMi-
grator [42] use a similar approach for script migration, i.e.,
finding the target application widget with the highest semantic
similarity to the widget operated by the source test script. For
the calculation of semantic similarity, they both use word-
level word embedding [43, 44] techniques to calculate the
semantic similarity between two widgets by computing the
cosine similarity of the embedding.
Mariani et al. first present empirical study [17] on both tools
in depth and argues that sentence-level word embedding tech-
niques [45, 46] and sentence-level similarity calculation would
be better because widget attributes tend to be composed of
multiple words. Also, Mariani’s work points out that training
word embedding on a mobile application domain dataset give
better results than general purpose corpora. GenDroid draws
on the strengths of previous work in that we use sentence-level
semantic similarity computation techniques [13] to compute
the semantic similarity between the test intent and the widget.
At the same time, the properties of widgets are read and
written by humans and should share the same semantic space
as the general corpus in most cases. Therefore, we employ
a pre-trained model and fine-tune it on a dataset of mobile
applications to learn both the generic corpus and mobile
application-specific semantic knowledge.
Seq2act [15], our comparison subject, does not fall into
any of the above categories. seq2act can translate natural
language commands for mobile user interface operations into
the corresponding widgets and actions. However, it can only
handle cases where the test intent is continuous. It requires
training a Transformer model from scratch, which is costly.
Our work uses UI transfer graphs to allow the application
to migrate automatically to the correct state. The pre-trained
model we use also reduces the training cost significantly.

8. CONCLUSION

In this paper, we propose a new approach to writing test
scripts that allow testers to write test intents based on natural
language, reducing testers’ burden and increasing the scripts’
robustness. We propose GenDroid, a new approach based
on pre-trained models with random forests to convert test
intents into corresponding test events. To further reduce the
burden on testers, we propose a path planning module to
automatically generate omitted test events. At the same time,
the path planning module can also avoid the impact of the
failure of the previous test intent on the subsequent test intent.
Experiments show that GenDroid outperforms the state-of-the-
art tool seq2act in test intent coverage.
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